115 research outputs found
Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program 'iTHER'
iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival.
Keywords: Adolescent; Cancer; Child; Hereditary; Molecular biology; Molecular targeted therapy; Next-generation sequencing; Precision medicin
A phase I/II trial of AT9283, a selective inhibitor of aurora kinase in children with relapsed or refractory acute leukemia: challenges to run early phase clinical trials for children with leukemia.
Aurora kinases regulate mitosis and are commonly overexpressed in leukemia. This phase I/IIa study of AT9283, a multikinase inhibitor, was designed to identify maximal tolerated doses, safety, pharmacokinetics, and pharmacodynamic activity in children with relapsed/refractory acute leukemia. The trial suffered from poor recruitment and terminated early, therefore failing to identify its primary endpoints. AT9283 caused tolerable toxicity, but failed to show clinical responses. Future trials should be based on robust preclinical data that provide an indication of which patients may benefit from the experimental agent, and recruitment should be improved through international collaborations and early combination with established treatment strategies
A phase I/II trial of AT9283, a selective inhibitor of aurora kinase in children with relapsed or refractory acute leukemia: challenges to run early phase clinical trials for children with leukemia
Aurora kinases regulate mitosis and are commonly overexpressed in leukemia. This phase I/IIa study of AT9283, a multikinase inhibitor, was designed to identify maximal tolerated doses, safety, pharmacokinetics, and pharmacodynamic activity in children with relapsed/refractory acute leukemia. The trial suffered from poor recruitment and terminated early, therefore failing to identify its primary endpoints. AT9283 caused tolerable toxicity, but failed to show clinical responses. Future trials should be based on robust preclinical data that provide an indication of which patients may benefit from the experimental agent, and recruitment should be improved through international collaborations and early combination with established treatment strategies
Past, present, and future efforts to enhance the efficacy of cord blood hematopoietic cell transplantation
Cord blood (CB) has been used as a viable source of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) in over 35,000 clinical hematopoietic cell transplantation (HCT) efforts to treat the same variety of malignant and non-malignant disorders treated by bone marrow (BM) and mobilized peripheral blood (mPB) using HLA-matched or partially HLA-disparate related or unrelated donor cells for adult and children recipients. This review documents the beginning of this clinical effort that started in the 1980's, the pros and cons of CB HCT compared to BM and mPB HCT, and recent experimental and clinical efforts to enhance the efficacy of CB HCT. These efforts include means for increasing HSC numbers in single CB collections, expanding functional HSCs ex vivo, and improving CB HSC homing and engraftment, all with the goal of clinical translation. Concluding remarks highlight the need for phase I/II clinical trials to test the experimental procedures that are described, either alone or in combination
Bone Marrow Transplantation Results in Human Donor Blood Cells Acquiring and Displaying Mouse Recipient Class I MHC and CD45 Antigens on Their Surface
Background: Mouse models of human disease are invaluable for determining the differentiation ability and functional capacity of stem cells. The best example is bone marrow transplants for studies of hematopoietic stem cells. For organ studies, the interpretation of the data can be difficult as transdifferentiation, cell fusion or surface antigen transfer (trogocytosis) can be misinterpreted as differentiation. These events have not been investigated in hematopoietic stem cell transplant models. Methodology/Principal Findings: In this study we investigated fusion and trogocytosis involving blood cells during bone marrow transplantation using a xenograft model. We report that using a standard SCID repopulating assay almost 100 % of the human donor cells appear as hybrid blood cells containing both mouse and human surface antigens. Conclusion/Significance: Hybrid cells are not the result of cell-cell fusion events but appear to be due to efficient surface antigen transfer, a process referred to as trogocytosis. Antigen transfer appears to be non-random and includes all donor cells regardless of sub-type. We also demonstrate that irradiation preconditioning enhances the frequency of hybrid cell
The MLL recombinome of acute leukemias in 2017
Chromosomal rearrangements of the human MLL/KMT2A gene are associated with infant, pediatric, adult and therapy-induced acute leukemias. Here we present the data obtained from 2345 acute leukemia patients. Genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and 11 novel TPGs were identified. Thus, a total of 135 different MLL rearrangements have been identified so far, of which 94 TPGs are now characterized at the molecular level. In all, 35 out of these 94 TPGs occur recurrently, but only 9 specific gene fusions account for more than 90% of all illegitimate recombinations of the MLL gene. We observed an age-dependent breakpoint shift with breakpoints localizing within MLL intron 11 associated with acute lymphoblastic leukemia and younger patients, while breakpoints in MLL intron 9 predominate in AML or older patients. The molecular characterization of MLL breakpoints suggests different etiologies in the different age groups and allows the correlation of functional domains of the MLL gene with clinical outcome. This study provides a comprehensive analysis of the MLL recombinome in acute leukemia and demonstrates that the establishment of patient-specific chromosomal fusion sites allows the design of specific PCR primers for minimal residual disease analyses for all patients
hiPSC-derived bone marrow milieu identifies a clinically actionable driver of niche-mediated treatment resistance in leukemia
Leukaemia cells re-program their microenvironment to provide proliferation support and protection from standard chemotherapy, molecularly targeted therapies, and immunotherapy. Although much is becoming known about molecules that drive niche-dependent treatment resistance; means of targeting these in the clinics has remained a key obstacle. To address this challenge, we have developed human induced pluripotent stem cell engineered niches ex vivo to reveal insights into druggable cancer-niche dependencies. We show that mesenchymal (iMSC) and vascular niche-like (iANG) cells support ex vivo proliferation of patient-derived leukaemia cells, impact dormancy and mediate therapy resistance. iMSC protected both non-cycling and cycling blasts against dexamethasone treatment while iANG protected only dormant blasts. Leukaemia proliferation and protection from dexamethasone induced-apoptosis was dependent on direct cell-cell contact and mediated by CDH2. To explore the therapeutic potential of disrupting this cell-cell interaction, we tested the CDH2 antagonist ADH-1 (previously in phase I / II for solid tumours) in a very aggressive patient-derived xenograft leukaemia mouse model. ADH-1 showed high in vivo efficacy. ADH-1/ dexamethasone combination therapy was superior to dexamethasone alone with no ADH1 conferred additional toxicity. These findings provide a proof-of-concept starting point to develop novel, potentially safer therapeutics that target niche-mediated cancer cell dependencies in haematological malignancies.Summary CDH2 mediated niche-dependent cancer proliferation and treatment resistance is clinically targetable via ADH-1, a low toxic agent that could be potentially repurposed for future clinical trials in acute leukaemia.Competing Interest StatementThe authors have declared no competing interest
Understanding the cancer stem cell
The last 15 years has seen an explosion of interest in the cancer stem cell (CSC). Although it was initially believed that only a rare population of stem cells are able to undergo self-renewing divisions and differentiate to form all populations within a malignancy, a recent work has shown that these cells may not be as rare as thought first, at least in some malignancies. Improved experimental models are beginning to uncover a less rigid structure to CSC biology, in which the concepts of functional plasticity and clonal evolution must be incorporated into the traditional models. Slowly the genetic programmes and biological processes underlying stem cell biology are being elucidated, opening the door to the development of drugs targeting the CSC. The aim of ongoing research to understand CSCs is to develop novel stem cell-directed treatments, which will reduce therapy resistance, relapse and the toxicity associated with current, non-selective agents
Early phase clinical trials of anticancer agents in children and adolescents — an ITCC perspective
In the past decade, the landscape of drug development in oncology has evolved dramatically; however, this paradigm shift remains to be adopted in early phase clinical trial designs for studies of molecularly targeted agents and immunotherapeutic agents in paediatric malignancies. In drug development, prioritization of drugs on the basis of knowledge of tumour biology, molecular 'drivers' of disease and a drug's mechanism of action, and therapeutic unmet needs are key elements; these aspects are relevant to early phase paediatric trials, in which molecular profiling is strongly encouraged. Herein, we describe the strategy of the Innovative Therapies for Children with Cancer (ITCC) Consortium, which advocates for the adoption of trial designs that enable uninterrupted patient recruitment, the extrapolation from studies in adults when possible, and the inclusion of expansion cohorts. If a drug has neither serious dose-related toxicities nor a narrow therapeutic index, then studies should generally be started at the adult recommended phase II dose corrected for body surface area, and act as dose-confirmation studies. The use of adaptive trial designs will enable drugs with promising activity to progress rapidly to randomized studies and, therefore, will substantially accelerate drug development for children and adolescents with cancer
- …