60 research outputs found

    Farber disease: clinical presentation, pathogenesis and a new approach to treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Farber Disease is an autosomal-recessively inherited, lysosomal storage disorder caused by acid ceramidase deficiency and associated with distinct clinical phenotypes. Children with significant neurological involvement usually die early in infancy, whereas patients without or only mild neurological findings suffer from progressive joint deformation and contractures, subcutaneous nodules, inflammatory, periarticular granulomas, a hoarse voice and finally respiratory insufficiency caused by granuloma formation in the respiratory tract and interstitial pneumonitis leading to death in the third or fourth decade of live. As the inflammatory component of this disorder is caused by some kind of leukocyte dysregulation, allogeneic hematopoietic stem cell transplantation can restore a healthy immune system and thus may provide a curative option in Farber Disease patients without neurological involvement. Previous stem cell transplantations in two children with severe neurological involvement had resulted in a disappointing outcome, as both patients died of progressive deterioration of their neurological status. As a consequence, stem cell transplantation does not appear to be able to abolish or even reduce the neurotoxic effects of the abundant ceramide storage in the brain.</p> <p>Methods</p> <p>After myeloablative, busulfan-based preparative regimens, four Farber Disease patients without neurological involvement received an allogeneic hematopoietic stem cell transplantation from related and unrelated donors. Stem cell source was BM in three patients and PBSC in one patient; GvHD-prophylaxis consisted of CsA and short course MTX.</p> <p>Results and discussion</p> <p>In all patients, HSCT resulted in almost complete resolution of granulomas and joint contractures, considerable improvement of mobility and joint motility without relevant therapy-related morbidities. All patients are alive and well at this point with stabile donor cell chimerism and without evidence of chronic GvHD or other late sequelae of stem cell transplantation.</p> <p>Conclusion</p> <p>Allogeneic hematopoietic stem cell transplantation provides a promising approach for Farber Disease patients without neurological involvement.</p

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program 'iTHER'

    Full text link
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival. Keywords: Adolescent; Cancer; Child; Hereditary; Molecular biology; Molecular targeted therapy; Next-generation sequencing; Precision medicin

    Targeted inhibitors and antibody immunotherapies: Novel therapies for paediatric leukaemia and lymphoma

    Full text link
    Despite improved outcomes achieved in the last decades for children with newly diagnosed leukaemia and lymphoma, treatment of patients with refractory/relapsed disease remains a challenge. The cure rate is still unsatisfactory and often achieved at the cost of significant morbidity. Exploring treatment with novel agents should offer less toxic therapeutic options, without compromising efficacy. Bispecific and antibody-drug conjugates targeting CD19 and CD22 (blinatumomab and inotuzumab ozogamicin) play an important role in the treatment of relapsed and refractory B-cell precursor acute lymphoblastic leukaemia (BCP-ALL); antibodies targeting CD123 and CD38 are also under investigation for acute myeloid leukaemia (AML) and T-ALL, respectively. Targeted therapy with small molecules is of primary importance for specific genetic subtypes, such as BCR-ABL-positive ALL, FLT3-ITD AML and anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma. KMT2A-directed targeted therapy with menin inhibitors holds promise to be of relevance in KMT2A-rearranged leukaemias, known to have dismal prognosis. Target inhibition in cellular pathways such as BCL-2, RAS, MEK, Bruton's tyrosine kinase, JAK-STAT or CDK4/CDK6 inhibition may be suitable for different diseases with common mutated pathways. Nevertheless, development and approval of new agents for paediatric cancers lags behind adult therapeutic options. New regulations were implemented to accelerate drug development for children. Considering the number of oncology medicinal products available for adults and the rarity of paediatric cancers, prioritisation based on scientific evidence and medical need, as well as international collaboration, is critical. Herein, we review the current status of drug development for children with leukaemia and lymphoma, excluding cellular therapy despite its well-known significance

    Glucocorticoids and selumetinib are highly synergistic in RAS pathway-mutated childhood acute lymphoblastic leukemia through upregulation of BIM

    Get PDF
    New drugs are needed for relapsed acute lymphoblastic leukemia and preclinical evaluation of the MEK inhibitor, selumetinib, has shown excellent activity in those with RAS pathway mutations. The proapoptotic protein, BIM is pivotal in the induction of cell death by both selumetinib and glucocorticoids, suggesting the potential for synergy. Thus, combination indices for dexamethasone and selumetinib were determined in RAS pathway mutated acute lymphoblastic leukemia primagraft cells in vitro and were indicative of strong synergism (CI &lt;0.2; n=5). Associated pharmacodynamic assays were consistent with the hypothesis that the drug combination enhanced BIM upregulation over single drug alone. Dosing of dexamethasone and selumetinib singly, and in combination in mice engrafted with primary derived RAS pathway mutated leukemia cells, resulted in a marked reduction in spleen size which was significantly greater with the drug combination. Assessment of the central nervous system leukaemia burden showed a significant reduction in drug treated mice, with no detectable leukemia in those treated with the drug combination. These data suggest that a selumetinib-dexamethasone combination may be highly effective in RAS pathway mutated acute lymphoblastic leukemia and an international phase I/II clinical trial of dexamethasone and selumetinib (Seludex trial) is underway for children with multiple relapsed/refractory disease

    MAPK-ERK is a central pathway in T-cell acute lymphoblastic leukemia that drives steroid resistance

    Full text link
    (Patho-)physiological activation of the IL7-receptor (IL7R) signaling contributes to steroid resistance in pediatric T-cell acute lymphoblastic leukemia (T-ALL). Here, we show that activating IL7R pathway mutations and physiological IL7R signaling activate MAPK-ERK signaling, which provokes steroid resistance by phosphorylation of BIM. By mass spectrometry, we demonstrate that phosphorylated BIM is impaired in binding to BCL2, BCLXL and MCL1, shifting the apoptotic balance toward survival. Treatment with MEK inhibitors abolishes this inactivating phosphorylation of BIM and restores its interaction with anti-apoptotic BCL2-protein family members. Importantly, the MEK inhibitor selumetinib synergizes with steroids in both IL7-dependent and IL7-independent steroid resistant pediatric T-ALL PDX samples. Despite the anti-MAPK-ERK activity of ruxolitinib in IL7-induced signaling and JAK1 mutant cells, ruxolitinib only synergizes with steroid treatment in IL7-dependent steroid resistant PDX samples but not in IL7-independent steroid resistant PDX samples. Our study highlights the central role for MAPK-ERK signaling in steroid resistance in T-ALL patients, and demonstrates the broader application of MEK inhibitors over ruxolitinib to resensitize steroid-resistant T-ALL cells. These findings strongly support the enrollment of T-ALL patients in the current phase I/II SeluDex trial (NCT03705507) and contributes to the optimization and stratification of newly designed T-ALL treatment regimens

    Phase II-like murine trial identifies synergy between dexamethasone and dasatinib in T-cell acute lymphoblastic leukemia

    Get PDF
    T-cell Acute Lymphoblastic Leukemia (T-ALL) is frequently characterized by glucocorticoid (GC) resistance, which is associated with inferior outcomes, thus highlighting the need for novel therapeutic approaches for GC resistant T-ALL. The pTCR/TCR signaling pathways play a critical role in cell fate decisions during physiological thymocyte development, with an interplay between TCR and glucocorticoid receptor (GR) signaling determining the T-lymphocyte selection process. We performed an shRNA screen in vitro and in vivo in T-ALL cell lines and patient derived xenograft (PDX) samples to identify vulnerabilities in the pTCR/TCR pathway and identified a critical role for the kinase LCK in cell proliferation. LCK knockdown or inhibition with dasatinib (DAS) caused cell cycle arrest. Combination of DAS with dexamethasone (DEX) resulted in significant drug synergy leading to cell death. The efficacy of this drug combination was underscored in a randomized phase II-like murine trial, recapitulating an early phase human clinical trial. T-ALL expansion in immunocompromised mice was significantly impaired using this drug combination, relative to mice receiving control vehicle or single drug treatment, highlighting the immediate clinical relevance of this drug combination for high risk T-ALL patients. Our results thus provide a strategy to improve the efficacy of current chemotherapy platforms and circumvent GC resistance

    The oncogenic transcription factor RUNX1/ETO corrupts cell cycle regulation to drive leukemic transformation

    Get PDF
    Oncogenic transcription factors such as the leukemic fusion protein RUNX1/ETO, which drives t(8;21) acute myeloid leukemia (AML), constitute cancer-specific but highly challenging therapeutic targets. We used epigenomic profiling data for an RNAi screen to interrogate the transcriptional network maintaining t(8;21) AML. This strategy identified Cyclin D2 (CCND2) as a crucial transmitter of RUNX1/ETO-driven leukemic propagation. RUNX1/ETO cooperates with AP-1 to drive CCND2 expression. Knockdown or pharmacological inhibition of CCND2 by an approved drug significantly impairs leukemic expansion of patient-derived AML cells and engraftment in immunodeficient murine hosts. Our data demonstrate that RUNX1/ETO maintains leukemia by promoting cell cycle progression and identifies G1 CCND-CDK complexes as promising therapeutic targets for treatment of RUNX1/ETO-driven AML

    Molecular characterisation and clinical outcome of B-cell precursor acute lymphoblastic leukaemia with IG-MYC rearrangement

    Get PDF
    Rarely, immunophenotypically immature B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) carries an immunoglobulin-MYC rearrangement (IG-MYC-r). This can result in diagnostic confusion with Burkitt lymphoma/leukaemia and use of unproven individualised treatment schedules. Here we contrast the molecular characteristics of these conditions and investigate historic clinical outcome data. We identified 90 cases registered on a national BCP-ALL clinical trial/registry. Where present, diagnostic material underwent cytogenetic, exome, methylome and transcriptome analysis. Outcome was analysed to define 3-year event free survival (EFS) and overall survival (OS). IG-MYC-r was identified in diverse cytogenetic backgrounds, co-existing with either: established BCP-ALL specific abnormalities (high hyperdiploidy n=3, KMT2A-rearrangement n=6, iAMP21 n=1, BCR-ABL n=1); BCL2/BCL6-rearrangements (n=15); or, most commonly, as the only defining feature (n=64). Within this final group, precursor-like V(D)J breakpoints predominated (8/9) and KRAS mutations were common (5/11). DNA methylation identified a cluster of V(D)J rearranged cases, clearly distinct from Burkitt leukaemia/lymphoma. Children with IG-MYC-r within that subgroup had 3-year EFS of 47% and OS of 60%, representing a high-risk BCP-ALL. To develop effective management strategies this patient group must be allowed access to contemporary, minimal residual disease adapted, prospective clinical trial protocols

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’

    Get PDF
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’

    Get PDF
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival
    • …
    corecore