28 research outputs found

    Successful establishment of primary small airway cell cultures in human lung transplantation

    Get PDF
    Background: The study of small airway diseases such as post-transplant bronchiolitis obliterans syndrome (BOS) is hampered by the difficulty in assessing peripheral airway function either physiologically or directly. Our aims were to develop robust methods for sampling small airway epithelial cells (SAEC) and to establish submerged SAEC cultures for downstream experimentation

    Improved lung preservation relates to an increase in tubular myelin-associated surfactant protein A

    Get PDF
    BACKGROUND: Declining levels of surfactant protein A (SP-A) after lung transplantation are suggested to indicate progression of ischemia/reperfusion (IR) injury. We hypothesized that the previously described preservation-dependent improvement of alveolar surfactant integrity after IR was associated with alterations in intraalveolar SP-A levels. METHODS: Using immuno electron microscopy and design-based stereology, amount and distribution of SP-A, and of intracellular surfactant phospholipids (lamellar bodies) as well as infiltration by polymorphonuclear leukocytes (PMNs) and alveolar macrophages were evaluated in rat lungs after IR and preservation with EuroCollins or Celsior. RESULTS: After IR, labelling of tubular myelin for intraalveolar SP-A was significantly increased. In lungs preserved with EuroCollins, the total amount of intracellular surfactant phospholipid was reduced, and infiltration by PMNs and alveolar macrophages was significantly increased. With Celsior no changes in infiltration or intracellular surfactant phospholipid amount occurred. Here, an increase in the number of lamellar bodies per cell was associated with a shift towards smaller lamellar bodies. This accounts for preservation-dependent changes in the balance between surfactant phospholipid secretion and synthesis as well as in inflammatory cell infiltration. CONCLUSION: We suggest that enhanced release of surfactant phospholipids and SP-A represents an early protective response that compensates in part for the inactivation of intraalveolar surfactant in the early phase of IR injury. This beneficial effect can be supported by adequate lung preservation, as e.g. with Celsior, maintaining surfactant integrity and reducing inflammation, either directly (via antioxidants) or indirectly (via improved surfactant integrity)

    Surfactant protein-D and pulmonary host defense

    Get PDF
    Surfactant protein-D (SP-D) participates in the innate response to inhaled microorganisms and organic antigens, and contributes to immune and inflammatory regulation within the lung. SP-D is synthesized and secreted by alveolar and bronchiolar epithelial cells, but is also expressed by epithelial cells lining various exocrine ducts and the mucosa of the gastrointestinal and genitourinary tracts. SP-D, a collagenous calcium-dependent lectin (or collectin), binds to surface glycoconjugates expressed by a wide variety of microorganisms, and to oligosaccharides associated with the surface of various complex organic antigens. SP-D also specifically interacts with glycoconjugates and other molecules expressed on the surface of macrophages, neutrophils, and lymphocytes. In addition, SP-D binds to specific surfactant-associated lipids and can influence the organization of lipid mixtures containing phosphatidylinositol in vitro. Consistent with these diverse in vitro activities is the observation that SP-D-deficient transgenic mice show abnormal accumulations of surfactant lipids, and respond abnormally to challenge with respiratory viruses and bacterial lipopolysaccharides. The phenotype of macrophages isolated from the lungs of SP-D-deficient mice is altered, and there is circumstantial evidence that abnormal oxidant metabolism and/or increased metalloproteinase expression contributes to the development of emphysema. The expression of SP-D is increased in response to many forms of lung injury, and deficient accumulation of appropriately oligomerized SP-D might contribute to the pathogenesis of a variety of human lung diseases

    Helicobacter infection in the surfactant protein D-deficient mouse

    No full text
    BACKGROUND: Surfactant protein D (SP-D), a component of innate immunity, is expressed in the gastric mucosa and is up-regulated in the presence of Helicobacter infection. SP-D binds to Helicobacter in vitro, suggesting the involvement of SP-D in Helicobacter-induced immune responses. The aim of this study was to determine the role of SP-D in gastric epithelial defense in vivo. METHODS: Specific pathogen-free SP-D-deficient mice (SP-D(-/-)) and C57BL/6 wild-type controls were challenged by gavage with different doses of Helicobacter felis, a mouse-adapted Helicobacter strain. Mice were assessed for colonization rates and density of infection. Inflammatory responses were measured by neutrophil counting and T-cell responses by proliferation assays on spleen cells stimulated with H. felis sonicate. The in vitro effect of SP-D on Helicobacter uptake by monocyte-derived dendritic cells was assessed by confocal microscopy and FACS analyses. RESULTS: SP-D(-/-) mice were more susceptible to low-dose infectious challenge than C57BL/6 controls (p = .02). The density of colonization was higher in the SP-D(-/-) infected mice. Neutrophil infiltrates were lower in the SP-D(-/-) mice, particularly in the acid-secreting regions of the stomach. T-cell proliferative responses to Helicobacter antigen were reduced in SP-D(-/-) mice (p = .001) after 12 weeks infection. In vitro uptake of Helicobacter by dendritic cells was significantly enhanced in the presence of SP-D (p = .001). CONCLUSION: In the absence of SP-D, Helicobacter uptake by dendritic cells is impaired. This provides an explanation for the diminished inflammation and immune responses in the SP-D(-/-) mice
    corecore