54 research outputs found

    Structure of the Sec61 channel opened by a signal sequence

    Get PDF
    Secreted and integral membrane proteins compose up to one-third of the biological proteome. These proteins contain hydrophobic signals that direct their translocation across or insertion into the lipid bilayer by the Sec61 protein–conducting channel. The molecular basis of how hydrophobic signals within a nascent polypeptide trigger channel opening is not understood. Here, we used cryo–electron microscopy to determine the structure of an active Sec61 channel that has been opened by a signal sequence. The signal supplants helix 2 of Sec61α, which triggers a rotation that opens the central pore both axially across the membrane and laterally toward the lipid bilayer. Comparisons with structures of Sec61 in other states suggest a pathway for how hydrophobic signals engage the channel to gain access to the lipid bilayer

    Structural basis for membrane insertion by the human ER membrane protein complex

    Get PDF
    A defining step in the biogenesis of a membrane protein is the insertion of its hydrophobic transmembrane helices into the lipid bilayer. The nine-subunit endoplasmic reticulum (ER) membrane protein complex (EMC) is a conserved co- and posttranslational insertase at the ER. We determined the structure of the human EMC in a lipid nanodisc to an overall resolution of 3.4 angstroms by cryo–electron microscopy, permitting building of a nearly complete atomic model. We used structure-guided mutagenesis to demonstrate that substrate insertion requires a methionine-rich cytosolic loop and occurs via an enclosed hydrophilic vestibule within the membrane formed by the subunits EMC3 and EMC6. We propose that the EMC uses local membrane thinning and a positively charged patch to decrease the energetic barrier for insertion into the bilayer

    How mutations in tRNA distant from the anticodon affect the fidelity of decoding

    Get PDF
    The ribosome converts genetic information into protein by selecting aminoacyl tRNAs whose anticodons base-pair to an mRNA codon. Mutations in the tRNA body can perturb this process and affect fidelity. The Hirsh suppressor is a well-studied tRNA^(Trp) harboring a G24A mutation that allows readthrough of UGA stop codons. Here we present crystal structures of the 70S ribosome complexed with EF-Tu and aminoacyl tRNA (native tRNA^(Trp), G24A tRNA^(Trp) or the miscoding A9C tRNA^(Trp)) bound to cognate UGG or near-cognate UGA codons, determined at 3.2-Å resolution. The A9C and G24A mutations lead to miscoding by facilitating the distortion of tRNA required for decoding. A9C accomplishes this by increasing tRNA flexibility, whereas G24A allows the formation of an additional hydrogen bond that stabilizes the distortion. Our results also suggest that each native tRNA will adopt a unique conformation when delivered to the ribosome that allows accurate decoding

    Differential modes of orphan subunit recognition for the WRB/CAML complex

    Get PDF
    A large proportion of membrane proteins must be assembled into oligomeric complexes for function. How this process occurs is poorly understood, but it is clear that complex assembly must be tightly regulated to avoid accumulation of orphan subunits with potential cytotoxic effects. We interrogated assembly in mammalian cells by using the WRB/CAML complex, an essential insertase for tail-anchored proteins in the endoplasmic reticulum (ER), as a model system. Our data suggest that the stability of each subunit is differentially regulated. In WRB’s absence, CAML folds incorrectly, causing aberrant exposure of a hydrophobic transmembrane domain to the ER lumen. When present, WRB can correct the topology of CAML both in vitro and in cells. In contrast, WRB can independently fold correctly but is still degraded in the absence of CAML. We therefore propose that there are at least two distinct regulatory pathways for the surveillance of orphan subunits in the mammalian ER

    Structure of the Sec61 channel opened by a signal sequence

    Get PDF
    Secreted and integral membrane proteins compose up to one-third of the biological proteome. These proteins contain hydrophobic signals that direct their translocation across or insertion into the lipid bilayer by the Sec61 protein–conducting channel. The molecular basis of how hydrophobic signals within a nascent polypeptide trigger channel opening is not understood. Here, we used cryo–electron microscopy to determine the structure of an active Sec61 channel that has been opened by a signal sequence. The signal supplants helix 2 of Sec61α, which triggers a rotation that opens the central pore both axially across the membrane and laterally toward the lipid bilayer. Comparisons with structures of Sec61 in other states suggest a pathway for how hydrophobic signals engage the channel to gain access to the lipid bilayer

    Structure of the Mammalian Ribosome-Sec61 Complex to 3.4 Å Resolution

    Get PDF
    Cotranslational protein translocation is a universally conserved process for secretory and membrane protein biosynthesis. Nascent polypeptides emerging from a translating ribosome are either transported across or inserted into the membrane via the ribosome-bound Sec61 channel. Here, we report structures of a mammalian ribosome-Sec61 complex in both idle and translating states, determined to 3.4 and 3.9 Å resolution. The data sets permit building of a near-complete atomic model of the mammalian ribosome, visualization of A/P and P/E hybrid-state tRNAs, and analysis of a nascent polypeptide in the exit tunnel. Unprecedented chemical detail is observed for both the ribosome-Sec61 interaction and the conformational state of Sec61 upon ribosome binding. Comparison of the maps from idle and translating complexes suggests how conformational changes to the Sec61 channel could facilitate translocation of a secreted polypeptide. The high-resolution structure of the mammalian ribosome-Sec61 complex provides a valuable reference for future functional and structural studies

    Structural basis for membrane insertion by the human ER membrane protein complex

    Get PDF
    A defining step in the biogenesis of a membrane protein is the insertion of its hydrophobic transmembrane helices into the lipid bilayer. The nine-subunit endoplasmic reticulum (ER) membrane protein complex (EMC) is a conserved co- and posttranslational insertase at the ER. We determined the structure of the human EMC in a lipid nanodisc to an overall resolution of 3.4 angstroms by cryo–electron microscopy, permitting building of a nearly complete atomic model. We used structure-guided mutagenesis to demonstrate that substrate insertion requires a methionine-rich cytosolic loop and occurs via an enclosed hydrophilic vestibule within the membrane formed by the subunits EMC3 and EMC6. We propose that the EMC uses local membrane thinning and a positively charged patch to decrease the energetic barrier for insertion into the bilayer

    Physical properties of the photodamaged human skin dermis: Rougher collagen surface and stiffer/harder mechanical properties

    Full text link
    Fragmentation of collagen fibrils and aberrant elastic material (solar elastosis) in the dermal extracellular matrix (ECM) is among the most prominent features of photodamaged human skin. These alterations impair the structural integrity and create a dermal microenvironment prone to skin disorders. The objective of this study was to determine the physical properties (surface roughness, stiffness and hardness) of the dermal ECM in photodamaged and subject‐matched sun‐protected human skin. Skin samples were sectioned and analysed by histology, atomic force microscopy and nanoindentation. Dermal ECM collagen fibrils were more disorganized (ie, rougher surface), and the dermal ECM was stiffer and harder, in photodamaged forearm, compared to sun‐protected underarm skin. Cleavage of collagen fibrils in sun‐protected underarm dermis by recombinant human matrix metalloproteinase‐1 resulted in rougher collagen fibril surface and reduced dermal stiffness and hardness. Degradation of elastotic material in photodamaged skin by treatment with purified neutrophil elastase reduced stiffness and hardness, without altering collagen fibril surface roughness. Additionally, expression of two members of the lysyl oxidase gene family, which insert cross‐links that stiffen and harden collagen fibrils, was elevated in photodamaged forearm dermis. These data elucidate the contributions of fragmented collagen fibrils, solar elastosis and elevated collagen cross‐linking to the physical properties of the dermal ECM in photodamaged human skin. This new knowledge extends current understanding of the impact of photodamage on the dermal ECM microenvironment.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150500/1/exd13728_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150500/2/exd13728.pd

    The isolation of novel "Erwinia" phages and their use in the study of bacterial phytopathogenicity

    Get PDF
    A number of bacteriophages were isolated on the "soft rot" phytopathogens Erwinia carotovora subsp. atroseptica SCRI1043 and Erwinia carotovora subsp. carotovora SCRI193. Several of these phages were used to obtain phage resistant mutants of SCRI1043, in order to investigate the role of the bacterial cell surface in virulence. While a number of phenotypic properties relating to pathogenicity and virulence of this strain have already been uncovered, little is known about the role of the cell surface in virulence. It was hoped that the use of phages would allow selection of mutants altered in both cell surface and virulence. Two phage resistant mutants, A5/22 and A5/8, exhibited reduced virulence when inoculated into potato plants, and were investigated further. Both mutants showed pleiotropic phenotypes. As well as reduced virulence and phage resistance, these mutants showed a number of other phenotypic alterations including, a reduction in the production of plant cell wall degrading enzymes, increased sensitivity to surface active agents, alterations in lipopolysaccharide and outer membrane protein profiles and reduced motility. A5/22 also exhibited bacteriostasis in the presence of galactose. Mutant A5/22 was more severely affected in its virulence than A5/8, which reflected in its greater deviation from the wild type phenotype. While no one phenotypic alteration could be directly associated with the reduced virulence of either mutant, a combination of several phenotypes may have been responsible. The phages isolated in this study were the first reported for these strains of Erwinia, and were therefore characterised under a number of criteria. All phages were grouped on the basis of structural morphology, restriction endonuclease digestion and host range. This is the first detailed characterisation of phages for Erwinia carotovora subsp. atroseptica. All isolated phages were tested for generalised transduction, a method of molecular genetic analysis so far unavailable to Erwinia carotovora subsp. atroseptica SCRI1043 and Erwinia carotovora subsp. carotovora SCRI193. Two phages, ØKP and ØMl, were capable of generalised transduction in SCRI193 and SCRI1043 respectively. Both these phages were characterised and transducing frequencies improved. ØMl is the first transducing phage reported for Erwinia carotovora subsp. atroseptica and ØKP is only the second for Erwinia carotovora subsp. carotovora. Both phages are now being used extensively in the laboratory

    An Uncharged Amine in the Transition State of the Ribosomal Peptidyl Transfer Reaction

    Get PDF
    The ribosome has an active site comprised of RNA that catalyzes peptide bond formation. To understand how RNA promotes this reaction requires a detailed understanding of the chemical transition state. Here, we report the BrÞnsted coefficient of the α-amino nucleophile with a series of puromycin derivatives. Both 50S subunit- and 70S ribosome-catalyzed reactions displayed linear free-energy relationships with slopes close to zero under conditions where chemistry is rate limiting. These results indicate that, at the transition state, the nucleophile is neutral in the ribosome-catalyzed reaction, in contrast to the substantial positive charge reported for typical uncatalyzed aminolysis reactions. This suggests that the ribosomal transition state involves deprotonation to a degree commensurate with nitrogen-carbon bond formation. Such a transition state is significantly different from that of uncatalyzed aminolysis reactions in solution
    • 

    corecore