110 research outputs found
Deriving Good LDPC Convolutional Codes from LDPC Block Codes
Low-density parity-check (LDPC) convolutional codes are capable of achieving
excellent performance with low encoding and decoding complexity. In this paper
we discuss several graph-cover-based methods for deriving families of
time-invariant and time-varying LDPC convolutional codes from LDPC block codes
and show how earlier proposed LDPC convolutional code constructions can be
presented within this framework. Some of the constructed convolutional codes
significantly outperform the underlying LDPC block codes. We investigate some
possible reasons for this "convolutional gain," and we also discuss the ---
mostly moderate --- decoder cost increase that is incurred by going from LDPC
block to LDPC convolutional codes.Comment: Submitted to IEEE Transactions on Information Theory, April 2010;
revised August 2010, revised November 2010 (essentially final version).
(Besides many small changes, the first and second revised versions contain
corrected entries in Tables I and II.
Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease
We used PET scans with the tracers [18F]fluorodeoxyglucose (FDG) and [11C]raclopride (RACLO) to study glucose metabolism and dopamine D2 receptor binding in the caudate nucleus and putamen of 18 carriers of the Huntington's disease gene mutation (10 asymptomatic subjects and eight untreated symptomatic Huntington's disease patients in an early disease stage). We also performed MR1 scans and measured the bicaudate ratio (BCR) in the same subjects. Data were compared with those from nine mutation-negative members of Huntington's disease families and separate groups of age matched controls. The PET scans were repeated 1.5-3 years later in six of the asymptomatic gene carriers. Symptomatic Huntington's disease patients showed a marked reduction of FDG and RACLO uptake in the caudate nucleus and putamen and a significant increase of BCR. Asymptomatic mutation carriers revealed significant hypometabolism in the caudate nucleus and putamen. The RACLO binding was significantly decreased in the putamen. Decrements of caudate nucleus tracer uptake, particularly RACLO, correlated significantly with BCR increases in both symptomatic and asymptomatic gene carriers. In asymptomatic carriers, metabolic and receptor binding decreases were also significantly associated with the CAG repeat number but not with the individual's age. Discriminant function analysis correctly classified clinical and genetic status in 24 of 27 subjects on the basis of their striatal PET values (83% sensitivity and 100% specificity). Three asymptomatic mutation carriers were classified/grouped together with mutation-negative subjects, indicating that these individuals had normal striatal RACLO and FDG uptake. Follow-up PET data from gene-positive subjects showed a significant reduction in the mean striatal RACLO binding of 6.3% per year. Striatal glucose metabolism revealed an overall non significant 2.3% decrease per year These data indicate that asymptomatic Huntington's disease mutation carriers may show normal neuronal function for a long period of life. These findings also suggest that it may be possible to predict when an asymptomatic gene carrier will develop clinical symptoms from serial PET measurements of striatal functio
On the exactness of the cavity method for Weighted b-Matchings on Arbitrary Graphs and its Relation to Linear Programs
We consider the general problem of finding the minimum weight b-matching on
arbitrary graphs. We prove that, whenever the linear programming relaxation of
the problem has no fractional solutions, then the cavity or belief propagation
equations converge to the correct solution both for synchronous and
asynchronous updating
Preparation and characterization of three 7Be targets for the measurement of the 7Be(n,p)7Li and 7Be(n,a)7Li reaction cross sections
This manuscript describes the production of three targets obtained by implantation of different activities of 7Be into thin aluminium disks. Two of the produced targets were used to measure the 7Be(n, p)7Li cross section in the energy range of interest for the Big-Bang Nucleosynthesis. A third target was used to measure the cross sections of 7Be(n, p)7Li and 7Be(n, )7Li nuclear reactions with cold and thermal neutrons, respectively. This paper describes also the characterization of the first two targets, performed after the neutron irradiation, in terms of implanted 7Be activities and spatial distributions.The work has partly been funded by CHANDA (grant agreement No
FP7-Fission-2013-605203).
The Federal Ministry of Education and Research through the FMeVgrant 05K16PGA, has partially supported the use of the implantation
equipment
Three-Dimensional Imaging of Magnetic Domains with Neutron Grating Interferometry
This paper gives a brief overview on3D imaging of magnetic domains with shearing grating neutron tomography. We investigated the three-dimensional distribution of magnetic domain walls in the bulk of a wedge-shaped FeSi single crystal. The width of the magnetic domains wasanalyzed at different locations within the crystal. Magnetic domains close to the tip of the wedge are much smaller than in the bulk. Furthermore, the three-dimensional shape of individual domains wasinvestigated. We discuss prospects and limitations of the applied measurement technique
Belief Propagation and Loop Series on Planar Graphs
We discuss a generic model of Bayesian inference with binary variables
defined on edges of a planar graph. The Loop Calculus approach of [1, 2] is
used to evaluate the resulting series expansion for the partition function. We
show that, for planar graphs, truncating the series at single-connected loops
reduces, via a map reminiscent of the Fisher transformation [3], to evaluating
the partition function of the dimer matching model on an auxiliary planar
graph. Thus, the truncated series can be easily re-summed, using the Pfaffian
formula of Kasteleyn [4]. This allows to identify a big class of
computationally tractable planar models reducible to a dimer model via the
Belief Propagation (gauge) transformation. The Pfaffian representation can also
be extended to the full Loop Series, in which case the expansion becomes a sum
of Pfaffian contributions, each associated with dimer matchings on an extension
to a subgraph of the original graph. Algorithmic consequences of the Pfaffian
representation, as well as relations to quantum and non-planar models, are
discussed.Comment: Accepted for publication in Journal of Statistical Mechanics: theory
and experimen
Multicentre multi-device hybrid imaging study of coronary artery disease: results from the EValuation of INtegrated Cardiac Imaging for the Detection and Characterization of Ischaemic Heart Disease (EVINCI) hybrid imaging population
AIMS:
Hybrid imaging provides a non-invasive assessment of coronary anatomy and myocardial perfusion. We sought to evaluate the added clinical value of hybrid imaging in a multi-centre multi-vendor setting.
METHODS AND RESULTS:
Fourteen centres enrolled 252 patients with stable angina and intermediate (20-90%) pre-test likelihood of coronary artery disease (CAD) who underwent myocardial perfusion scintigraphy (MPS), CT coronary angiography (CTCA), and quantitative coronary angiography (QCA) with fractional flow reserve (FFR). Hybrid MPS/CTCA images were obtained by 3D image fusion. Blinded core-lab analyses were performed for CTCA, MPS, QCA and hybrid datasets. Hemodynamically significant CAD was ruled-in non-invasively in the presence of a matched finding (myocardial perfusion defect co-localized with stenosed coronary artery) and ruled-out with normal findings (both CTCA and MPS normal). Overall prevalence of significant CAD on QCA (>70% stenosis or 30-70% with FFR 640.80) was 37%. Of 1004 pathological myocardial segments on MPS, 246 (25%) were reclassified from their standard coronary distribution to another territory by hybrid imaging. In this respect, in 45/252 (18%) patients, hybrid imaging reassigned an entire perfusion defect to another coronary territory, changing the final diagnosis in 42% of the cases. Hybrid imaging allowed non-invasive CAD rule-out in 41%, and rule-in in 24% of patients, with a negative and positive predictive value of 88% and 87%, respectively.
CONCLUSION:
In patients at intermediate risk of CAD, hybrid imaging allows non-invasive co-localization of myocardial perfusion defects and subtending coronary arteries, impacting clinical decision-making in almost one every five subjects
- …