4 research outputs found
New varying speed of light theories
We review recent work on the possibility of a varying speed of light (VSL).
We start by discussing the physical meaning of a varying , dispelling the
myth that the constancy of is a matter of logical consistency. We then
summarize the main VSL mechanisms proposed so far: hard breaking of Lorentz
invariance; bimetric theories (where the speeds of gravity and light are not
the same); locally Lorentz invariant VSL theories; theories exhibiting a color
dependent speed of light; varying induced by extra dimensions (e.g. in the
brane-world scenario); and field theories where VSL results from vacuum
polarization or CPT violation. We show how VSL scenarios may solve the
cosmological problems usually tackled by inflation, and also how they may
produce a scale-invariant spectrum of Gaussian fluctuations, capable of
explaining the WMAP data. We then review the connection between VSL and
theories of quantum gravity, showing how ``doubly special'' relativity has
emerged as a VSL effective model of quantum space-time, with observational
implications for ultra high energy cosmic rays and gamma ray bursts. Some
recent work on the physics of ``black'' holes and other compact objects in VSL
theories is also described, highlighting phenomena associated with spatial (as
opposed to temporal) variations in . Finally we describe the observational
status of the theory. The evidence is currently slim -- redshift dependence in
the atomic fine structure, anomalies with ultra high energy cosmic rays, and
(to a much lesser extent) the acceleration of the universe and the WMAP data.
The constraints (e.g. those arising from nucleosynthesis or geological bounds)
are tight, but not insurmountable. We conclude with the observational
predictions of the theory, and the prospects for its refutation or vindication.Comment: Final versio
Recommended from our members
International Remote Monitoring Project Embalse Nuclear Power Station, Argentina Embalse Remote Monitoring System
The Autoridad Regulatoria Nuclear of Argentina (ARN), the International Atomic Energy Agency (IAEA), ABACC, the US Department of Energy, and the US Support Program POTAS, cooperated in the development of a Remote Monitoring System for nuclear nonproliferation efforts. This system was installed at the Embalse Nuclear Power Station last year to evaluate the feasibility of using radiation sensors in monitoring the transfer of spent fuel from the spent fuel pond to dry storage. The key element in this process is to maintain continuity of knowledge throughout the entire transfer process. This project evaluated the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguard efficiency. New technology has been developed to enhance the design of the system to include storage capability on board sensor platforms. This evaluation has led to design enhancements that will assure that no data loss will occur during loss of RF transmission of the sensors