6 research outputs found

    Simulation of deflection coil winding : theory and verification of SWING

    Get PDF

    FE calculations on a three stage metal forming process of Sandvik Nanoflex

    Get PDF
    Sandvik NanoflexTM combines good corrosion resistance with high strength. This steel has good deformability in\ud austenitic conditions. It belongs to the group of metastable austenites, which means that during deformation a strain-induced\ud transformation into martensite takes place. After deformation, transformation continues as a result of internal stresses. Both\ud transformations are stress-state and temperature dependent. A constitutive model for this steel has been formulated, based\ud on the macroscopic material behaviour measured by inductive measurements. Both the stress-assisted and the strain-induced\ud transformation into martensite have been incorporated in this model. Path-dependent work hardening has also been taken\ud into account. This article describes how the model is implemented in an internal Philips FE code called CRYSTAL, which is\ud a dedicated robust and accurate finite element solver. The implementation is based on lookup tables in combination with\ud feed-forward neural networks. The radial return method is used to determine the material state during and after plastic\ud flow, however, it has been extended to cope with the stiff character of the partial differential equation that describes the\ud transformation behaviour

    FEM simulations of a multi stage forming process on Sandvik maraging steel 1RK91 describing the stress assisted and the strain induced martensite transformation

    No full text
    Sandvik steel 1RK91 combines good corrosion resistance with high strength. The steel has good deformability in austenitic conditions. This material belongs to the group of metastable austenites, so during deformation a strain-induced transformation into martensite takes place. After deformation, transformation continues as a result of internal stresses. Depending on the heat treatment, this stress-assisted transformation is more or less autocatalytic. Both transformations are stress-state and temperature dependent. This article presents a constitutive model for this steel, based on the macroscopic material behaviour measured by inductive measurements. Both the stress-assisted and the strain- induced transformation to martensite are incorporated in this model. Path-dependent work hardening is also taken into account. The model is implemented in the commercial FEM code MARC for doing simulations. In the simulations the tools are treated as rigid bodies, friction is taken into account because it influences the stress state during metal forming. The material properties after a calculation step are mapped to the next step to incorporate the cumulative effect of the transformation and work hardening during the different steps. A multi-stage metal-forming process is simulated. The process consists of different forming steps with intervals between them to simulate the waiting time between the different metal-forming steps. Results of the transformation behaviour are presented together with the shape of the product during and after metal forming. Finally, this article shows the results of the calculation in which the material transforms autocatalytic, as a result of a specific heat treatment

    Analysis of Cu/low-k bond pad delamination by using a novel failure index

    No full text
    For the development of state-of-the-art Cu/low-k CMOS technologies, the integration and introduction of new low-k materials is one of the major bottlenecks owing to the bad thermal and mechanical integrity of these materials and the inherited weak interfacial adhesion.Especially the forces resulting from packaging related processes such as dicing, wire bonding, bumping and molding are critical and can easily result in cracking, delamination and chipping of the IC back-end structure if no appropriate measures are taken. This paper presents a methodology for optimizing the thermo-mechanical reliability of bond pads by using a 3D multi-scale finite element approach. An important characteristic of this methodology is the use of a novel energy-based failure index, which allows a fast qualitative comparison of different back-end structures. The usability of the methodology will be illustrated by a case study in which several bondpad structures are analysed

    FE calculations on a three stage metal forming process of Sandvik Nanoflex

    No full text
    Sandvik Nanoflex™ combines good corrosion resistance with high strength. This steel has good deformability in austenitic conditions. It belongs to the group of metastable austenites, which means that during deformation a strain-induced transformation into martensite takes place. After deformation, transformation continues as a result of internal stresses. Both transformations are stress-state and temperature dependent. A constitutive model for this steel has been formulated, based on the macroscopic material behaviour measured by inductive measurements. Both the stress-assisted and the strain-induced transformation into martensite have been incorporated in this model. Path-dependent work hardening has also been taken into account. This article describes how the model is implemented in an internal Philips FE code called Crystal, which is a dedicated robust and accurate finite element solver. The implementation is based on lookup tables in combination with feed-forward neural networks. The radial return method is used to determine the material state during and after plastic flow, however, it has been extended to cope with the stiff character of the partial differential equation that describes the transformation behaviour

    Simulation of arterial dissection by a penetrating external body using cohesive zone modelling

    No full text
    In this paper, we study the dissection of arterial layers by means of a stiff, planar, penetrating external body (a ‘wedge’), and formulate a novel model of the process using cohesive zone formalism. The work is motivated by a need for better understanding of, and numerical tools for simulating catheter-induced dissection, which is a potentially catastrophic complication whose mechanisms remain little understood. As well as the large deformations and rupture of the tissue, models of such a process must accurately capture the interaction between the tissue and the external body driving the dissection. The latter feature, in particular, distinguishes catheter-induced dissection from, for example, straightforward peeling, which is relatively well-studied. As a step towards such models, we study a scenario involving a geometrically simpler penetrating object (the wedge), which affords more reliable comparison with experimental observations, but which retains the key feature of dissection driven by an external body, as described. Particular emphasis is placed on assessing the reliability of cohesive zone approaches in this context. A series of wedge-driven dissection experiments on porcine aorta were undertaken, from which tissue elastic and fracture parameters were estimated. Finite element models of the experimental configuration, with tissue considered to be a hyperelastic medium, and evolution of tissue rupture modelled with a consistent large-displacement cohesive formulation, were then constructed. Model-predicted and experimentally measured reaction forces on the wedge throughout the dissection process were compared and found to agree well. The performance of the cohesive formulation in modelling externally driven dissection is finally assessed, and the prospects for numerical models of catheter-induced dissection using such approaches is considered
    corecore