2 research outputs found

    Allograft infiltration and meningoencephalitis by SARS-CoV-2 in a pancreas-kidney transplant recipient

    No full text
    Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) preferentially affects epithelia of the upper and lower respiratory tract. Thus, impairment of kidney function has been primarily attributed until now to secondary effects such as cytokine release or fluid balance disturbances. We provide evidence that SARS-CoV-2 can directly infiltrate a kidney allograft. A 69-year-old male, who underwent pancreas-kidney transplantation 13 years previously, presented to our hospital with coronavirus disease 2019 (COVID-19) pneumonia and impaired pancreas and kidney allograft function. Kidney biopsy was performed showing tubular damage and an interstitial mononuclear cell infiltrate. Reverse transcriptase polymerase chain reaction from the biopsy specimen was positive for SARS-CoV-2. In-situ hybridization revealed SARS-CoV-2 RNA in tubular cells and the interstitium. Subsequently, he had 2 convulsive seizures. Magnetic resonance tomography suggested meningoencephalitis, which was confirmed by SARS-CoV-2 RNA transcripts in the cerebrospinal fluid. The patient had COVID-19 pneumonia, meningoencephalitis, and nephritis. SARS-CoV-2 binds to its target cells through angiotensin-converting enzyme 2, which is expressed in a broad variety of tissues including the lung, brain, and kidney. SARS-CoV-2 thereby shares features with other human coronaviruses including SARS-CoV that were identified as pathogens beyond the respiratory tract as well. The present case should provide awareness that extrapulmonary symptoms in COVID-19 may be attributable to viral infiltration of diverse organs

    Lessons for the clinical nephrologist

    No full text
    SARS-CoV-2 is characterized by a multiorgan tropism including the kidneys. Recent autopsy series indicated that SARS-CoV-2 can infect both tubular and glomerular cells. Whereas tubular cell infiltration may contribute to acute kidney injury, data on a potential clinical correlative to glomerular affection is rare. We describe the first case of nephrotic syndrome in the context of COVID-19 in a renal transplant recipient. A 35 year old male patient received a kidney allograft for primary focal segmental glomerulosclerosis (FSGS). Three months posttransplant a recurrence of podocytopathy was successfully managed by plasma exchange, ivIG, and a conversion from tacrolimus to belatacept (initial proteinuria > 6 g/l decreased to 169 mg/l). Six weeks later he was tested positive for SARS-CoV-2 and developed a second increase of proteinuria (5.6 g/l). Renal allograft biopsy revealed diffuse podocyte effacement and was positive for SARS-CoV-2 in RNA in-situ hybridation indicating a SARS-CoV-2 associated recurrence of podocytopathy. Noteworthy, nephrotic proteinuria resolved spontaneously after recovering from COVID-19. The present case expands the spectrum of renal involvement in COVID-19 from acute tubular injury to podocytopathy in renal transplant recipients. Thus, it may be wise to test for SARS-CoV-2 prior to initiation of immunosuppression in new onset glomerulopathy during the pandemic
    corecore