10,516 research outputs found

    On the asymmetry of Gamow-Teller beta-decay rates in mirror nuclei in relation with second-class currents

    Get PDF
    The theoretical evaluation of major nuclear structure effects on the asymmetry of allowed Gamow-Teller beta-decay rates in light mirror nuclei is presented. The calculations are performed within the shell model, using empirical isospin-nonconserving interaction and realistic Woods-Saxon radial wave functions. The revised treatment of p-shell nuclei is supplemented by systematic calculations for sd-shell nuclei and compared to experimental asymmetries when available. The results are important in connection with the possible existence of second-class currents in the weak interaction.Comment: 16 pages, 6 figure

    Untangling supernova-neutrino oscillations with beta-beam data

    Get PDF
    Recently, we suggested that low-energy beta-beam neutrinos can be very useful for the study of supernova neutrino interactions. In this paper, we examine the use of a such experiment for the analysis of a supernova neutrino signal. Since supernova neutrinos are oscillating, it is very likely that the terrestrial spectrum of supernova neutrinos of a given flavor will not be the same as the energy distribution with which these neutrinos were first emitted. We demonstrate the efficacy of the proposed method for untangling multiple neutrino spectra. This is an essential feature of any model aiming at gaining information about the supernova mechanism, probing proto-neutron star physics, and understanding supernova nucleosynthesis, such as the neutrino process and the r-process. We also consider the efficacy of different experimental approaches including measurements at multiple beam energies and detector configurations.Comment: 13 pages, 11 figures, accepted for publication in Phys. Rev.

    A dynamical collective calculation of supernova neutrino signals

    Full text link
    We present the first calculations with three flavors of collective and shock wave effects for neutrino propagation in core-collapse supernovae using hydroynamical density profiles and the S matrix formalism. We explore the interplay between the neutrino-neutrino interaction and the effects of multiple resonances upon the time signal of positrons in supernova observatories. A specific signature is found for the inverted hierarchy and a large third neutrino mixing angle and we predict, in this case, a dearth of lower energy positrons in Cherenkov detectors midway through the neutrino signal and the simultaneous revelation of valuable information about the original fluxes. We show that this feature is also observable with current generation neutrino detectors at the level of several sigmas.Comment: 4 pages, 5 figure

    VHE gamma-ray observations of the young synchrotron-dominated SNRs G1.9+0.3 and G330.2+1.0 with H.E.S.S

    Full text link
    Supernova remnants (SNRs) are widely considered to be accelerators of cosmic rays (CR). They are also expected to produce very-high-energy (VHE; E>100E > 100 GeV) gamma rays through interactions of high-energy particles with the surrounding medium and photon fields. They are, therefore, promising targets for observations with ground-based imaging atmospheric Cherenkov telescopes like the H.E.S.S. telescope array. VHE gamma-ray emission has already been discovered from a number of SNRs, establishing them as a prominent source class in the VHE domain. Of particular interest are the handful of SNRs whose X-ray spectra are dominated by non-thermal synchrotron emission, such as the VHE gamma-ray emitters RX J0852.0-4622 (Vela Jr.) and RX J1713-3946. The shell-type SNRs G1.9+0.3 and G330.2+1.0 also belong to this subclass and are further notable for their young ages (1\leq 1 kyr), especially G1.9+0.3, which was recently determined to be the youngest SNR in the Galaxy (100\sim100 yr). These unique characteristics motivated investigations with H.E.S.S. to search for VHE gamma rays. The results of the H.E.S.S. observations and analyses are presented, along with implications for potential particle acceleration scenarios.Comment: ICRC 2011 proceedings, 4 pages, 2 figures, 3 table

    What about a beta-beam facility for low energy neutrinos?

    Full text link
    A novel method to produce neutrino beams has recently been proposed : the beta-beams. This method consists in using the beta-decay of boosted radioactive nuclei to obtain an intense, collimated and pure neutrino beam. Here we propose to exploit the beta-beam concept to produce neutrino beams of low energy. We discuss the applications of such a facility as well as its importance for different domains of physics. We focus, in particular, on neutrino-nucleus interaction studies of interest for various open issues in astrophysics, nuclear and particle physics. We suggest possible sites for a low energy beta-beam facility.Comment: 4 pages, 1 figur

    Influence of Noise on Force Measurements

    Full text link
    We demonstrate how the ineluctable presence of thermal noise alters the measurement of forces acting on microscopic and nanoscopic objects. We quantify this effect exemplarily for a Brownian particle near a wall subjected to gravitational and electrostatic forces. Our results demonstrate that the force measurement process is prone to artifacts if the noise is not correctly taken into account.Comment: 4 Pages, 4 Figures, Accepte

    Microscopic description of Coulomb and nuclear excitation of multiphonon states in 40^{40}Ca + 40^{40}Ca collisions

    Get PDF
    We calculate the inelastic scattering cross sections to populate one- and two-phonon states in heavy ion collisions with both Coulomb and nuclear excitations. Starting from a microscopic approach based on RPA, we go beyond it in order to treat anharmonicities and non-linear terms in the exciting field. These anharmonicities and non-linearities are shown to have important effects on the cross sections both in the low energy part of the spectrum and in the energy region of the Double Giant Quadrupole Resonance. By properly introducing an optical potential the inelastic cross section is calculated semiclassically by integrating the excitation probability over all impact parameters. A satisfactory agreement with the experimental results is obtained.Comment: 20 pages, 2 figures, revtex, to be published in Phys. Rev.
    corecore