41 research outputs found
Flow microcalorimetric measurements of the antibacterial activity of the homologous series m-alkoxyphenols and p-hydroxybenzoates on Escherichia coli
Antibacterial activity of two homologous series (m-alkoxyphenols and p-hydroxybenzoates) was studied in vitro by the respiration of Escherichia coli using flow microcalorimetry. Results for both series showed a linear relationship between log(dose) and the calorimetric response (CR). Analysis of the data allowed the identification of contributions for the derived bioactivity from the parent structures (the molecule minus n-CH2 groups present in the side-chain) and the lipophilic groups, CH2
Calorimetric study of the antibacterial activity of sodium n-alkylsulfates on the metabolism of Chromobacterium violaceum
The bioactivity of a series of sodium n-alkylsulfates (C6-C10 and C12) was studied with flow calorimetry to follow in real time the calorimetric effect on the metabolic rate of the bacterium Chromobacterium violaceum. All the compounds showed a linear plot of the fraction of control metabolic heat rate against log (dose). From these plots the value of dose max (the dose producing zero metabolic heat rate) for each compound was evaluated. The value of dose max is correlated with the chain length of the molecule, showing that their biological activity is directly proportional to the lipophilicity of the compound.A bioatividade de n-alquilsulfatos (C6 - C10 e C12) foi estudada utilizando-se calorimetria de fluxo em tempo real, para monitorar a resposta biológica (BR) produzida pelo metabolismo aeróbico da bactéria Chromobacterium violaceum. Todos os compostos apresentaram um comportamento linear no gráfico de BR vs. log (dose). Destes gráficos, foi calculado o valor de (dose)max para cada composto. O valor de (dose)max, que está diretamente relacionado com a biotividade, permitiu uma boa correlação entre esta propriedade e a estrutura da molécula, mostrando que a atividade biológica é diretamente proporcional à lipofilicidade dos compostos.10851088Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
Flow microcalorimetric measurements of the antibacterial activity of the homologous series m-alkoxyphenols and p-hydroxybenzoates on Escherichia coli
Antibacterial activity of two homologous series (m-alkoxyphenols and p-hydroxybenzoates) was studied in vitro by the respiration of Escherichia coli using flow microcalorimetry. Results for both series showed a linear relationship between log(dose) and the calorimetric response (CR). Analysis of the data allowed the identification of contributions for the derived bioactivity from the parent structures (the molecule minus n-CH2 groups present in the side-chain) and the lipophilic groups, CH2.A atividade antibacteriana dos membros de duas séries homólogas (m-alcoxifenóis e p-hidroxibenzoatos de alquila) foi estudada in vitro sobre a respiração da Escherichia coli usando microcalorimetria de fluxo. Os resultados para ambas as séries mostraram uma relação linear entre log(dose) e a resposta calorimétrica (RC). Análise dos dados permitiu a identificação de contribuições de bioatividade concernente a estrutura matriz (a molécula menos os grupos n-CH2 presentes na cadeia lateral) e a grupos lipofílicos, CH2.1
Diffusion Coefficients Of Aqueous Phenols Determined By The Taylor Dispersion Technique: Evidence For Solute Adsorption On The Walls Of Teflon Tubing
The Taylor dispersion technique has been used to determine the diffusion coefficients of the m-alkoxyphenol and alkyl p-hydroxybenzoate homologous series in aqueous 5 × 10-3 mol dm-3 NaOH solutions and water-ethanol mixtures. The deviations from the expected behaviour for the higher homologues increase with the eluent water content and are attributed to solute adsorption on the walls of the Teflon dispersion tube. However, the adsorption corrections performed using Golay's equation for capillary chromatography do not account for all the diffusion coefficient deviations. The experimental solute hydrodynamic radii, calculated through the Stokes-Einstein equation, decrease as the eluent ethanol content is increased. These radii are smaller than those estimated by using atomic contributions or by adding the atomic van der Waals radii to the solute optimized geometry.89111311
Microcalorimetric Measurement Of The Enthalpies Of Transfer Of A Series Of M-alkoxyphenols From Isotonic Aqueous Solution To Escherichia Coli Cells
Enthalpies of interactions of a series of m-alkoxyphenols with non-growing Escherichia coli suspended in a salt solution have been recorded. These data have been analysed on the assumption that the initial relatively rapid endothermic process represented the transfer of solute from aqueous solution to cells (ΔHtrs) and that the subsequent relatively lengthy exothermic process resulted from the biological consequences of the transfer process itself. The derived values are compared with values of ΔHtrs found for transfer of these solutes from water to octan-1-ol, heptane and propylene carbonate.8292929293
Study Of The Alcoholic Fermentation Of Sugars Diluted Solutions Through Flow Microcalorimetry [estudo Da Fermentação Alcoólica De Soluções Diluídas De Diferentes Açucares Utilizando Microcalorimetria De Fluxo]
The present study shows that with liquid nitrogen stored inocula of Saccharomyces cerevisiae, and standardized experimental procedure, flow microcalorimetry can be a valuable tool for monitoring in real time the alcoholic fermentation processes on line. The avaliation of cultural conditions contained different carbon sources for alcohol fermentation (sucrose, glucose, fructose, manose, maltose, galactose, molasses, honey and sugar cane) and their effects on the heat output recording is discussed. Some examples of diauxic growth is given, where the microcalorimeters serves to detect the temporal order of succession of alternating metabolic pathways.205528534Dubrunfaut, M., (1856) C.r. Séanc. Soc. Biol., 42, p. 945Hemminger, W., Höhne, G., (1984) Calorimetry, Fundamentals and Practice, , Verlag Chemie, WeinheimRubner, M., (1903) Arch. Hyg., 48, p. 260Rubner, M., (1904) Arch. Hyg., 49, p. 355Rubner, M., (1906) Arch. Hyg., 57, p. 193Rubner, M., (1906) Arch. Hyg., 57, p. 244Calvet, E., Prat, H., Skinner, H.A., (1963) Recent Progress in Microcalorimetry, , Pergamon Press, LondonBelaich, J.P., Senez, J.C., Murgier, M., (1968) J. Bacteriol., 95, p. 1750Fujita, T., Nunomura, K., Kagami, I., Nishikaura, Y., (1976) J. Gen Appl. Microbiol., 22, p. 43Forrest, W.W., (1972) Methods Microbiol., 6 B, p. 285Beezer, A.E., (1976) Applications of Calorimetry in Life Sciences, , (Lamprecht, I. e Schaarschmidt, B., eds), de Gruyter, Berlin and New YorkLuong, J.H.T., Volesky, B., (1983) Adv. Biochem. Eng. Biotechnol., 28, p. 1Calvet, E., (1962) Experimental Thermochemistry, , (Skinner, H. A., ed.), Wiley, New YorkBelaich, A., Belaich, J.P., (1976) J. Bacteriol., 125, p. 14Mou, D.-G., Cooney, C.L., (1976) Biotechnol. Bioeng., 18, p. 1371Wang, H., Wang, D.I.C., Cooney, C.L., (1978) Eur. J. Appl. Microbiol. Bioteclmol., 5, p. 207Luong, J.H.T., Yerushalmi, L., Volesky, B., (1983) Enzyme Microb. Technol., 5, p. 291Erickson, R., Holme, T., (1973) Biotechnol. Bioeng. Symp., 4, p. 581Monk, P.R., (1978) J. Bacteriol., 135, p. 373Ishikawa, Y., Shoda, M., Maruyama, H., (1981) Bioteclmol. Bioeng., 23, p. 2629Volpe, P.L.O., (1993) Quím. Nova, 16, p. 49Beczer, A.E., (1980) Biological Microcalorimetry, , Academic Press, LondonWadsö, I., (1987) Thermal and Energetic Studies of Cellular Biological Systems, p. 34. , (Ed. A. M. James) Wright, BristolVolpe, P.L.O., (1987) Quím. Nova, 10, p. 122Volpe, P.L.O., (1988) Quím. Nova, 11, p. 435(1982) Pure and Appl. Chem., 54, p. 671Forrest, W.W., Walker, D.J., (1964) Nature, 207, p. 49Kirsop, B.E., Snell, J.J., (1984) Maintenance of Microorganism, , Academic Press, New YorkVolpe, P.L.O., Silva Filho, E.A., (1995) Thermochimica Acta, 257, p. 59Dawes, E.A., Senior, P.J., (1973) Adv. Microb. Physiol., 10, p. 135Manners, D.J., (1971) The Yeast, 2, p. 418. , Ed. A. H. Rose e J. S. Harrison Academic Press, New YorkLillie, S.H., Pringle, J.R., (1980) J. Bacteriol., 143, p. 138
Electrostatic Charging And Charge Transport By Hydrated Amorphous Silica Under A High Voltage Direct Current Electrical Field
This work was initially based on the casual observation of an electrostatic phenomenon, in which particles of amorphous silica were attracted by a dc electrical field. The first observations were recently shown in a communication in this journal. To explain the electrical charge transport process observed in this work, all forces acting on silica particles were estimated and the significant ones were used to formulate a model made up of three elementary steps. Analyzing the experimental observations using this model, it was possible to suggest that electrons can be introduced into and removed from electronic bands of water. © 2011 American Institute of Physics.13421Rouquerol, F., Rouquerol, J., Sing, K.S.W., (1999) Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, , (Academic, London)El Shafei, G.M.S., (2000) Adsorption on Silica Surfaces, 90, p. 40. , Surfactant Science Series Vol., edited by E. Papirer (Marcel Dekker, New York)Du, Q., Freysz, E., Shen, Y.R., (1994) Phys. Rev. Lett., 72, p. 238. , 10.1103/PhysRevLett.72.238Bogdan, A., (2000) Adsorption on Silica Surfaces, 90, p. 689. , Surfactant Science Series Vol., edited by E. Papirer (Marcel Dekker, New York)Ramsay, J.D.F., Poinsignon, C., (1987) Langmuir, 3, p. 320. , 10.1021/la00075a006Hall, P.G., Pidduck, A., Wright, C.J., (1981) J. Colloid Interface Sci., 79, p. 339. , 10.1016/0021-9797(81)90085-0Takei, T., Chikazawa, M., Origin of differences in heats of immersion of silicas in water (1998) Journal of Colloid and Interface Science, 208 (2), pp. 570-574. , DOI 10.1006/jcis.1998.5880Klier, K., Shen, J.H., Zettlemo, A.C., (1973) J. Phys. Chem., 77, p. 1458. , 10.1021/j100630a026Hall, P., Williams, R.T., Slade, R.C.T., (1985) J. Chem. Soc., Faraday Trans. 1, 81, p. 847. , 10.1039/f19858100847Scott, R.P.W., Traiman, S., (1980) J. Chromatogr., 196, p. 193. , 10.1016/S0021-9673(00)80439-2Staszczuk, P., Jaroniec, M., Gilpin, R.K., Thermoanalytical studies of water films on porous silicas at subambient and elevated temperatures (1996) Thermochimica Acta, 287 (2), pp. 225-233. , DOI 10.1016/S0040-6031(96)03016-X, PII S004060319603016XYamauchi, H., Kondo, S., (1988) Colloid Polym. Sci., 266, p. 855. , 10.1007/BF01417870Yang, J., Meng, S., Xu, L.F., Wang, E.G., (2004) Phys. Rev. Lett., 92, p. 146102. , 10.1103/PhysRevLett.92.146102Do Couto, P.C., Costa Cabral, B.J., Canuto, S., Electron binding energies of water clusters: Implications for the electronic properties of liquid water (2006) Chemical Physics Letters, 429 (1-3), pp. 129-135. , DOI 10.1016/j.cplett.2006.08.046, PII S0009261406011493Ohrwall, G., Fink, R.F., Tchaplyguine, M., Ojamae, L., Lundwall, M., Marinho, R.R.T., De Brito, A.N., Bjorneholm, O., The electronic structure of free water clusters probed by Auger electron spectroscopy (2005) Journal of Chemical Physics, 123 (5), pp. 1-10. , DOI 10.1063/1.1989319, 054310Hirofumi, S., Fumio, H., (1999) J. Chem. Phys., 111, p. 8545. , 10.1063/1.480195Willians, F., Varma, S.P., Hillenius, S., (1976) J. Chem. Phys., 64, p. 1549. , 10.1063/1.432377Chipman, D.M., (1978) J. Phys. Chem., 82, p. 1080. , 10.1021/j100498a023Chipman, D.M., (1979) J. Phys. Chem., 83, p. 1657. , 10.1021/j100475a016Lee, H.M., Suh, S.B., Tarakeshwar, P., Kim, K.S., Origin of the magic numbers of water clusters with an excess electron (2005) Journal of Chemical Physics, 122 (4), pp. 1-6. , DOI 10.1063/1.1834502, 044309Do Couto, P.C., Estacio, S.G., Cabral, B.J.C., The Kohn-Sham density of states and band gap of water: From small clusters to liquid water (2005) Journal of Chemical Physics, 123 (5), pp. 1-10. , DOI 10.1063/1.1979487, 054510McCarty, L.S., Winkleman, A., Whitesides, G.M., Ionic electrets: Electrostatic charging of surfaces by transferring mobile ions upon contact (2007) Journal of the American Chemical Society, 129 (13), pp. 4075-4088. , DOI 10.1021/ja067301eShpenkov, G.P., (1995) Friction Surface Phenomena, 29. , Tribology Series Vol. (Elsevier, Amsterdam)Gouveia, R.F., Galembeck, F., (2009) J. Am. Chem. Soc., 131, p. 11381. , 10.1021/ja900704fOvchinnikova, K., Pollack, G.H., (2009) Langmuir, 25, p. 542. , 10.1021/la802430kSoares, L.C., Bertazzo, S., Burgo, T.A.L., Baldin, V., Galembeck, F., (2008) J. Braz. Chem. Soc., 19, p. 277. , 10.1590/S0103-50532008000200012Paik, D.H., Lee, I.-R., Yang, D.-S., Baskin, J.S., Zewail, A.H., Electrons in finite-sized water cavities: Hydration dynamics observed in real time (2004) Science, 306 (5696), pp. 672-675. , DOI 10.1126/science.1102827Taylor, A., Matta, C.F., Boyd, R.J., (2007) J. Chem. Theory Comput., 3, p. 1054Hammer, N.I., Shin, J.-W., Headrick, J.M., Diken, E.C., Roscioli, J.R., Weddle, G.H., Johnson, M.A., How do small water clusters bind an excess electron? (2004) Science, 306 (5696), pp. 675-679. , DOI 10.1126/science.1102792Onda, K., Li, B., Zhao, J., Jordan, K.D., Yang, J., Petek, H., Wet electrons at the H 2O/TiO 2(110) surface (2005) Science, 308 (5725), pp. 1154-1158. , DOI 10.1126/science.1109366Bragg, A.E., Verlet, J.R.R., Kammrath, A., Cheshnovsky, O., Neumark, D.M., Hydrated electron dynamics: From cluster to bulk (2004) Science, 306 (5696), pp. 669-671. , DOI 10.1126/science.1103527Perles, C.E., Volpe, P.L.O., (2010) J. Chem. Phys., 133, p. 241101. , 10.1063/1.3529422http://www.datasheetcatalog.org/datasheet/BurrBrown/mXqyxtx.pdf, See (accessed on 01032011)Ek, S., Root, A., Peussa, M., Niinisto, L., Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1H MAS NMR results (2001) Thermochimica Acta, 379 (1-2), pp. 201-212. , DOI 10.1016/S0040-6031(01)00618-9, PII S0040603101006189http://www.discoverysciences.com/uploadedFiles/Home/MEDIA_Davisil.pdf, See (accessed on 30032011)Handbook of Chemistry and Physics, pp. 2004-2005. , edited by D. R. Lide, 85th ed. (CRC Press, New York), Cha 15, 37Turov, V.V., Mironyuk, I.F., Adsorption layers of water on the surface of hydrophilic, hydrophobic and mixed silicas (1998) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 134 (3), pp. 257-263. , DOI 10.1016/S0927-7757(97)00225-2, PII S0927775797002252Asay, D.B., Kim, S.H., Evolution of the adsorbed water layer structure on silicon oxide at room temperature (2005) Journal of Physical Chemistry B, 109 (35), pp. 16760-16763. , DOI 10.1021/jp053042oXiao, X., Qian, L., (2000) Langmuir, 16, p. 8153. , 10.1021/la000770oIsraelachvili, J., (1985) Intermolecular and Surface Forces, p. 122. , (Academic, New York)Jones, R., Pollock, H.M., Cleaver, J.A.S., Hodges, C.S., Adhesion forces between glass and silicon surfaces in air studied by AFM: Effects of relative humidity, particle size, roughness, and surface treatment (2002) Langmuir, 18 (21), pp. 8045-8055. , DOI 10.1021/la0259196Bernas, A., Ferradini, C., Jay-Gerin, J.-P., On the electronic structure of liquid water: Facts and reflections (1997) Chemical Physics, 222 (2-3), pp. 151-160. , DOI 10.1016/S0301-0104(97)00213-9Bulk density is the density calculated with the apparent volume of a porous particle considering the pore void volum
Calorimetric Study Of Sds Micelle Formation In Water And In Nacl Solution At 298 K
The enthalpies of micellization for the anionic surfactant sodium dodecylsulphate (SDS) in water and in NaCl solution have been studied by calorimetry at 298 K. The calorimetric experiments were carried out by measuring the heat of solution of SDS in both monomeric and micellar phases. From these data the enthaply of micelle formation was derived. The enthalpy of solution of SDS below and above the critical micellar concentration was found to be endothermic. The results indicate that the enthaply of micelle formation in water at 298 K is -1.42 ± 0.30 KJ mol-1. The micellization process becomes more exothermic with addition of salt and the enthalpy of micelle formation in 0.50 mol dm-3 of NaCl is -8.90 ± 0.15 kJ mol-1. The calorimetric ampoule-breaking technique was adopted in this work for the investigation of the enthalpy of SDS micelle formation. Titration microcalorimetry using the TAM was unsuccessful. The enthalpy of micellization of SDS in water obtained in this work corresponds to the sign of the majority of the values reported in the literature, although very different values are found as well. An evaluation of the thermodynamic parameters is given. © 1995.257C5966Rusanov, Thermodynamics of ionic micelles (1989) Russian Chemical Reviews, 2 (58), p. 101Fendler, (1982) Membrane Mimetic Chemistry, , John Wiley and Sons, New YorkShinoda, Nakagawa, Tamamushi, Isemura, (1963) Colloid Surfactants, , Academic Press, New YorkLoh, Volpe, Interaction of alkyl p-hydroxybenzoates with micelles: Evaluation of their partition coefficients and ionization constants (1992) Journal of Colloid and Interface Science, 154 (2), p. 370Frank, Evans, (1945) J. Chem. Phys., 13, p. 507Lucassen-Reynders, (1981) Anonic Surfactants, , Marcel Dekker, Inc, New YorkDougherty, Berg, (1974) J. Colloid Interf. Sci., 48, p. 110Gilanyi, A Potentiometric Investigation of Sodium Ion Activity in Micellar Sodium Dodecyl Sulphate Solutions. (1973) Acta Chemica Scandinavica, 27, p. 729Anacker, (1970) Cationic Surfactants, p. 203. , E Jungermann, Marcel Dekker, Inc, New YorkShinoda, Hutchinson, (1962) J. Phys. Chem., 66, p. 577Fendler, (1975) Catalysis in Micellar and Macromolecular, , Academic Press, New YorkMukerjee, Mysels, Kapauan, (1967) J. Phys. Chem., 71, p. 4166Emerson, Holtzer, (1967) J. Phys. Chem., 71, p. 3320Wadsö, Design and Testing of a Micro Reaction Calorimeter. (1968) Acta Chemica Scandinavica, 22, p. 927Sunner, Wadsö, (1966) Sci. Tools, 13, p. 1Koch, Biggs, Diehl, (1975) Talanta, 22, p. 637Ray, Némethy, (1971) J. Phys., 6 (75), p. 804Aniansson, Wall, (1975) J. Phys. Chem., 79, p. 857Goddard, Benson, CONDUCTIVITY OF AQUEOUS SOLUTIONS OF SOME PARAFFIN CHAIN SALTS (1957) Canadian Journal of Chemistry, 35, p. 986Mazer, Olofsson, (1982) J. Phys. Chem., 86, p. 4584Chiu, Han, Chemg, (1984) Structure/Performance Relationship in Surfactants, p. 89. , M.J Rosen, University of New York, Washington, Chapter 6Berthod, Dorsey, (1988) Analusis, 16 (2), p. 75Singh, Saleem, Singh, (1980) J. Phys. Chem., 84, p. 2191Matijevic, Pethica, The heats of micelle formation of sodium dodecyl sulphate (1958) Transactions of the Faraday Society, 54, p. 587Benjamin, Calorimetric Studies of the Micellization of Dimethyl-n-alkylamine Oxides1 (1964) The Journal of Physical Chemistry, 68 (12), p. 3574Goddard, Pethica, 590. On detergent?protein interactions (1951) Journal of the Chemical Society (Resumed), 3, p. 2659Flockhart, Ubbelohde, (1953) J. Colloid Sci., 8, p. 428Goddard, Benson, (1956) Trans. Faraday Soc., 52, p. 409Flockhart, (1961) J. Colloid Sci., 16, p. 484Pilcher, Jones, Espada, Skinner, (1969) J. Chem. Thermodyn., 1, p. 381Eatough, Rehfeld, (1971) Thermochim. Acta, 2, p. 443Kresheck, (1975) Water. A Comprehensive Treatise, 4, p. 95. , 2nd edn., F Franks, Plenum Press, New YorkKresheck, Hargraves, (1974) J. Colloid Interf. Sci., 48 (3), p. 481Moroi, Nishikido, Uehara, Matimura, (1975) J. Colloid Interf. Sci., 50 (2), p. 254Paredes, Tribout, Ferreira, Leonis, (1976) Colloid Polym. Sci., 254, p. 637Woolley, Burchfield, (1984) J. Phys. Chem., 88, p. 2155Bergström, Olofsson, A calorimetric study of three long-chain ionic surfactants (1986) Thermochimica Acta, 109, p. 155Johnson, Olofsson, Solubilization of 2-propanol and pentanol in sodium dodecyl sulfate micelles: A thermochemical study (1987) Journal of Colloid and Interface Science, 7 (16), p. 56Sharma, Bhat, Ahluwalia, (1987) J. Colloid Interf. Sci., 115 (2), p. 39
Qsar Based On Biological Microcalorimetry. Iii Interaction Of M-alcoxyphenols And P-hydroxybenzoates With Escherichia Coli [estudos De Qsar Baseados Em Dados De Atividade Biológica Obtidos Por Microcalorimetria. Iii Interaçåo De M-alcoxifenóis E P-hidroxibenzoatos De Alquila Com Escherichia Coli]
QSAR studies based on flow microcalorimetric bioassay data for interaction of homologous series of m-alkoxyphenols and p-hydroxybenzoates with E. coli cells were carried out applying factorial design. Results for both series showed a linear relationship between log(dose)max and log Po/w. Analysis of these data allows the identification of contributions toward the derived bioactivity from the parent structures (the molecule minus n-CH2 groups present in the side-chain) and the lipophilic groups, CH2. These results are discussed with respect to drug quantitative structure-relationship.202125131Beezer, A.E., (1980) Biological Microcalorimetry, , Academic Press, LondonBeezer, A.E., Volpe, P.L.O., Miles, R.J., Hunter, W.H., (1986) J. Chem. Soc., Faraday Trans I, 82, p. 2929Beezer, A.E., Volpe, P.L.O., Gooch, C.A., Hunter, W.H., (1986) Analytical Proceedings, 23, p. 399Volpe, P.L.O., (1987) Quím. Nova, 10, p. 122Volpe, P.L.O., (1988) Quím. Nova, 11, p. 435Montanari, C.A., Montanari, M.L.C., Beezer, A.E., Giesbrecht, A.M., (1993) Quím. Nova, 16, p. 133Montanari, M.L.C., Sandall, J.P.B., Beezer, A.E., Montanari, C.A., (1992) Int. J. Pharm., 85, p. 199Leo, A., Hansch, C., Elkins, D., (1971) Chem. Rev., 71, p. 525Dearden, J.C., (1983) Quantitative Approaches to Drug Design, , Elsevier, AmsterdamRogers, J.A., Davis, S.S., (1980) Biochim. Diophys. Acta., 598, p. 392Free, S.M., Wilson, J.W., (1964) J. Med. Chem., 7, p. 395Kubinyi, H., (1990) Comprehensive Medicinal Chemistry, Quantitative Drug Design, 4, p. 589. , Ed. Ramsden, C. A. Pergamon Press, OxfordBeezer, A.E., Hunter, W.H., Storey, D.E., (1980) J. Pharm. Pharmacol., 32, p. 815Kirsop, B.E., Snell, J.J., (1984) Maintenance of Microorganisms, , Academic Press, New YorkVolpe, P.L.O., (1993) Quím. Nova., 16, p. 49Beezer, A.E., Volpe, P.L.O., Gooch, C.A., Hunter, W.H., Miles, R.J., (1986) International Journal of Pharmaceutics, 29, p. 237Pleiss, M.A., Unger, S.H., (1990) Comprehensive Medicinal Chemistry Quantitative Drug Design, 4, p. 56. , Ed. Ramsden, C. A., Pergamon Press, OxfordPastor, M., Alvares-Builla, J., (1991) Quant. Struct.-Act. Rel., 10, p. 350Dimicky, M., Huhtanen, C.N., (1979) Antimicrob. Agents Chemother, 15, p. 798Beezer, A.E., Gooch, C.A., Hunter, W.H., Volpe, P.L.O., (1987) J. Pharm. Pharmacol, 39, p. 774Hansch, C., (1977) Biological Activity and Chemical Structure, p. 47. , ed. J. A. Kevering Buisman, ElsevierFranke, R., (1984) Theoretical Drug Design Methods, p. 282. , ElsevierHansch, C., Hoekman, D., Gao, H., (1966) Chem. Rev., 96, p. 1045Hammett, L.P., (1935) Chem. Rev., 17, p. 125(1970) Physical Organic Chemistry, 2nd, Ed., , McGraw Hill, New YorkTute, M.S., (1990) Comprehensive Medicinal Chemistry, Quantitative Drug Design, 4. , Ed. Ramsden, C. A., Pergamon Press, Oxfor