8 research outputs found
Cyclization of short DNA fragments and bending fluctuations of the double helix
Cloutier and Widom [Cloutier, T. E. & Widom, J. (2004) Mol. Cell 14, 355–362] recently reported that the cyclization efficiency of short DNA fragments, about 100 bp in length, exceeds theoretical expectations by three orders of magnitude. In an effort to resolve this discrepancy, we tried modifying the theory. We investigated how the distribution of the angles between adjacent base pairs of the double helix affects the cyclization efficiency. We found that only the incorporation of sharp kinks in the angle distribution provides the desired increase of the cyclization efficiency. We did not find a model, however, that fits all cyclization data for DNA fragments of different lengths. Therefore, we carefully reinvestigated the cyclization of 100-bp DNA fragments experimentally and found their cyclization efficiency to be in remarkable agreement with the traditional model of DNA bending. We also found an explanation for the discrepancy between our results and those of Cloutier and Widom
Sequence dependence of DNA bending rigidity
For many aspects of DNA–protein interaction, it is vital to know how DNA bending rigidity (or persistence length, a) depends on its sequence. We addressed this problem using the method based on cyclization of short DNA fragments, which allows very accurate determination of a. Our approach was based on assigning specific values of a to each of 10 distinct dinucleotide steps. We prepared DNA fragments, each about 200 bp in length, with various quasi-periodic sequences, measured their cyclization efficiencies (j factors), and fitted the data by the theoretical equation to obtain the values of a for each fragment. From these data, we obtained a set of a for the dinucleotide steps. To test this set, we used it to design DNA sequences that should correspond to very low and very high values of a, prepared the corresponding fragments, and determined their values of a experimentally. The measured and calculated values of a were very close to one another, confirming that we have found the correct solution to this long-standing problem. The same experimental data also allowed us to determine the sequence dependence of DNA helical repeat