2,834 research outputs found

    Microscopic conditions favoring itinerant ferromagnetism: Hund's rule coupling and orbital degeneracy

    Full text link
    The importance of Hund's rule coupling for the stabilization of itinerant ferromagnetism is investigated within a two-band Hubbard model. The magnetic phase diagram is calculated by finite-temperature quantum Monte Carlo simulations within the dynamical mean-field theory. Ferromagnetism is found in a broad range of electron fillings whereas antiferromagnetism exists only near half filling. The possibility of orbital ordering at quarter filling is also analyzed.Comment: 5 pages, 6 figures, RevTeX, final version contains an additional phase diagram for smaller Hund's rule coupling. to appear in Eur. Phys. J. B (1998

    T-matrix formulation of real-space dynamical mean-field theory and the Friedel sum rule for correlated lattice fermions

    Get PDF
    We formulate real-space dynamical mean-field theory within scattering theory. Thereby the Friedel sum rule is derived for interacting lattice fermions at zero temperature.Comment: 7 pages, no figures, extended and corrected versio

    Multitude of phases in correlated lattice fermion systems with spin-dependent disorder

    Get PDF
    The magnetic phases induced by the interplay between disorder acting only on particles with a given spin projection ("spin-dependent disorder") and a local repulsive interaction is explored. To this end the magnetic ground state phase diagram of the Hubbard model at half-filling is computed within dynamical mean-field theory combined with the geometric average over disorder, which is able to describe Anderson localization. Five distinct phases are identified: a ferromagnetically polarized metal, two types of insulators, and two types of spin-selective localized phases. The latter four phases possess different long-range order of the spins. The predicted phase diagram may be tested experimentally using cold fermions in optical lattices subject to spin-dependent random potentials.Comment: 8 pages, 9 figures, revised versio

    Correlated-Electron Theory of Strongly Anisotropic Metamagnets

    Full text link
    We present the first correlated-electron theory of metamagnetism in strongly anisotropic antiferromagnets. Quantum-Monte-Carlo techniques are used to calculate the field vs. temperature phase diagram of the infinite-dimensional Hubbard model with easy axis. A metamagnetic transition scenario with 1.~order and 2.~order phase transitions is found. The apparent similarities to the phase diagram of FeBr2_2 and to mean-field results for the Ising model with competing interactions are discussed.Comment: 4 pages, RevTeX + one uuencoded ps-file including 3 figure

    Spin-selective localization of correlated lattice fermions

    Full text link
    The interplay between local, repulsive interactions and disorder acting only on one spin orientation of lattice fermions ("spin-dependent disorder") is investigated. The nonmagnetic disorder vs. interaction phase diagram is computed using Dynamical Mean-Field Theory in combination with the geometric average over disorder. The latter determines the typical local density of states and is therefore sensitive to Anderson localization. The effect of spin-dependent disorder is found to be very different from that of conventional disorder. In particular, it destabilizes the metallic solution and leads to a novel spin-selective, localized phase at weak interactions and strong disorder

    3-Oxabicyclo[3,2,0]hepta-1,4-diene

    Get PDF
    3-Oxabicyclo[3,2,0]hepta-1,4-diene (3) has been synthesized by partial hydrogenation of 3-oxabicyclo-[3,2,0]hepta-1,4,6-triene (2)

    Strong-coupling solution of the bosonic dynamical mean-field theory

    Full text link
    We derive an approximate analytical solution of the self-consistency equations of the bosonic dynamical mean-field theory (B-DMFT) in the strong-coupling limit. The approach is based on a linked-cluster expansion in the hybridization function of normal bosons around the atomic limit. The solution is used to compute the phase diagram of the bosonic Hubbard model for different lattices. We compare our results with numerical solutions of the B-DMFT equations and numerically exact methods, respectively. The very good agreement with those numerical results demonstrates that our approach captures the essential physics of correlated bosons both in the Mott insulator and in the superfluid phase. Close to the transition into the superfluid phase the momentum distribution function at zero momentum is found to be strongly enhanced already in the normal phase. The linked-cluster expansion also allows us to compute dynamical properties such as the spectral function of bosons. The evolution of the spectral function across the transition from the normal to the superfluid phase is seen to be characteristically different for the interaction driven and density driven transition, respectively.Comment: 8 pages, 6 figure

    A mean-field theory of Anderson localization

    Full text link
    Anderson model of noninteracting disordered electrons is studied in high spatial dimensions. We find that off-diagonal one- and two-particle propagators behave as gaussian random variables w.r.t. momentum summations. With this simplification and with the electron-hole symmetry we reduce the parquet equations for two-particle irreducible vertices to a single algebraic equation for a local vertex. We find a disorder-driven bifurcation point in this equation signalling vanishing of diffusion and onset of Anderson localization. There is no bifurcation in d=1,2d=1,2 where all states are localized. A natural order parameter for Anderson localization pops up in the construction.Comment: REVTeX4, 4 pages, 2 EPS figure

    Dissipative Currents in Superfluid 3He Weak Links

    Full text link
    We calculate the current-pressure relation for pinholes connecting two volumes of bulk superfluid 3He-B. The theory of multiple Andreev reflections, adapted from superconducting weak links, leads to a nonlinear dependence of the dc current on pressure bias. In arrays of pinholes one has to take into account oscillations of the texture at the Josephson frequency. The associated radiation of spin waves from the junction leads to an additional dissipative current at small biases, in quantitative agreement with measurements.Comment: 4 pages, 3 figures; updated to the published versio
    • …
    corecore