506 research outputs found
Maneuver Recovery Analysis for the Magnetospheric Multiscale Mission
The use of spacecraft formations creates new and more demanding requirements for orbit determination accuracy. In addition to absolute navigation requirements, there are typically relative navigation requirements that are based on the size or shape of the formation. The difficulty in meeting these requirements is related to the relative dynamics of the spacecraft orbits and the frequency of the formation maintenance maneuvers. This paper examines the effects of bi-weekly formation maintenance maneuvers on the absolute and relative orbit determination accuracy for the four-spacecraft Magnetospheric Multiscale (MMS) formation. Results are presented from high fidelity simulations that include the effects of realistic orbit determination errors in the maneuver planning process. Solutions are determined using a high accuracy extended Kalman filter designed for onboard navigation. Three different solutions are examined, considering the effects of process noise and measurement rate on the solutions
Maneuver Recovery Analysis for the Magnetospheric Multiscale Mission
The use of spacecraft formations creates new and more demanding requirements for orbit determination accuracy. In addition to absolute navigation requirements, there are typically relative navigation requirements that are based on the size or shape of the formation. The difficulty in meeting these requirements is related to the relative dynamics of the spacecraft orbits and the frequency of the formation maintenance maneuvers. This paper examines the effects of bi-weekly formation maintenance maneuvers on the absolute and relative orbit determination accuracy for the four-spacecraft Magnetospheric Multiscale (MMS) formation. Results are presented from high fidelity simulations that include the effects of realistic orbit determination errors in the maneuver planning process. Solutions are determined using a high accuracy extended Kalman filter designed for onboard navigation. Three different solutions are examined, considering the effects of process noise and measurement rate on the solutions
A Functional Signature Ontology (FUSION) screen detects an AMPK inhibitor with selective toxicity toward human colon tumor cells
AMPK is a serine threonine kinase composed of a heterotrimer of a catalytic, kinase-containing α and regulatory β and γ subunits. Here we show that individual AMPK subunit expression and requirement for survival varies across colon cancer cell lines. While AMPKα1 expression is relatively consistent across colon cancer cell lines, AMPKα1 depletion does not induce cell death. Conversely, AMPKα2 is expressed at variable levels in colon cancer cells. In high expressing SW480 and moderate expressing HCT116 colon cancer cells, siRNA-mediated depletion induces cell death. These data suggest that AMPK kinase inhibition may be a useful component of future therapeutic strategies. We used Functional Signature Ontology (FUSION) to screen a natural product library to identify compounds that were inhibitors of AMPK to test its potential for detecting small molecules with preferential toxicity toward human colon tumor cells. FUSION identified 5′-hydroxy-staurosporine, which competitively inhibits AMPK. Human colon cancer cell lines are notably more sensitive to 5′-hydroxy-staurosporine than are non-transformed human colon epithelial cells. This study serves as proof-of-concept for unbiased FUSION-based detection of small molecule inhibitors of therapeutic targets and highlights its potential to identify novel compounds for cancer therapy development
The affective modulation of motor awareness in anosognosia for hemiplegia : Behavioural and lesion evidence
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).The possible role of emotion in anosognosia for hemiplegia (i.e., denial of motor deficits contralateral to a brain lesion), has long been debated between psychodynamic and neurocognitive theories. However, there are only a handful of case studies focussing on this topic, and the precise role of emotion in anosognosia for hemiplegia requires empirical investigation. In the present study, we aimed to investigate how negative and positive emotions influence motor awareness in anosognosia. Positive and negative emotions were induced under carefully-controlled experimental conditions in right-hemisphere stroke patients with anosognosia for hemiplegia (n = 11) and controls with clinically normal awareness (n = 10). Only the negative, emotion induction condition resulted in a significant improvement of motor awareness in anosognosic patients compared to controls; the positive emotion induction did not. Using lesion overlay and voxel-based lesion-symptom mapping approaches, we also investigated the brain lesions associated with the diagnosis of anosognosia, as well as with performance on the experimental task. Anatomical areas that are commonly damaged in AHP included the right-hemisphere motor and sensory cortices, the inferior frontal cortex, and the insula. Additionally, the insula, putamen and anterior periventricular white matter were associated with less awareness change following the negative emotion induction. This study suggests that motor unawareness and the observed lack of negative emotions about one's disabilities cannot be adequately explained by either purely motivational or neurocognitive accounts. Instead, we propose an integrative account in which insular and striatal lesions result in weak interoceptive and motivational signals. These deficits lead to faulty inferences about the self, involving a difficulty to personalise new sensorimotor information, and an abnormal adherence to premorbid beliefs about the body.Peer reviewedFinal Published versio
Characterisation of spin coated engineered <i>Escherichia coli</i> biofilms using atomic force microscopy
The ability of biofilms to withstand chemical and physical extremes gives them the potential to be developed as robust biocatalysts. Critical to this issue is their capacity to withstand the physical environment within a bioreactor; in order to assess this capability knowledge of their surface properties and adhesive strength is required. Novel atomic force microscopy experiments conducted under growth conditions (30° C) were used to characterise Escherichia coli biofilms, which were generated by a recently developed spin-coating method onto a poly-L-lysine coated glass substrate. High-resolution topographical images were obtained throughout the course of biofilm development, quantifying the tip-cell interaction force during the 10 day maturation process. Strikingly, the adhesion force between the Si AFM tip and the biofilm surface increased from 0.8 nN to 40 nN within 3 days. This was most likely due to the production of extracellular polymer substance (EPS), over the maturation period, which was also observed by electron microscopy. At later stages of maturation, multiple retraction events were also identified corresponding to biofilm surface features thought to be EPS components. The spin coated biofilms were shown to have stronger surface adhesion than an equivalent conventionally grown biofilm on the same glass substrate
Quantitative and Qualitative Analysis of the Antifungal Activity of Allicin Alone and in Combination with Antifungal Drugs
The antifungal activity of allicin and its synergistic effects with the antifungal agents flucytosine and amphotericin B (AmB) were investigated in Candida albicans (C. albicans). C. albicans was treated with different conditions of compounds alone and in combination (allicin, AmB, flucytosine, allicin + AmB, allicin + flucytosine, allicin + AmB + flucytosine). After a 24-hour treatment, cells were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) to measure morphological and biophysical properties associated with cell death. The clearing assay was conducted to confirm the effects of allicin. The viability of C. albicans treated by allicin alone or with one antifungal drug (AmB, flucytosine) in addition was more than 40% after a 24-hr treatment, but the viability of groups treated with combinations of more than two drugs was less than 32%. When the cells were treated with allicin alone or one type of drug, the morphology of the cells did not change noticeably, but when cells were treated with combinations of drugs, there were noticeable morphological changes. In particular, cells treated with allicin + AmB had significant membrane damage (burst or collapsed membranes). Classification of cells according to their cell death phase (CDP) allowed us to determine the relationship between cell viability and treatment conditions in detail. The adhesive force was decreased by the treatment in all groups compare to the control. Cells treated with AmB + allicin had a greater adhesive force than cells treated with AmB alone because of the secretion of molecules due to collapsed membranes. All cells treated with allicin or drugs were softer than the control cells. These results suggest that allicin can reduce MIC of AmB while keeping the same efficacy
Quantitative and Qualitative Analyses of the Cell Death Process in Candida albicans Treated by Antifungal Agents
The death process of Candida albicans was investigated after treatment with the antifungal agents flucytosine and amphotericin B by assessing morphological and biophysical properties associated with cell death. C. albicans was treated varying time periods (from 6 to 48 hours) and examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM and AFM images clearly showed changes in morphology and biophysical properties. After drug treatment, the membrane of C. albicans was perforated, deformed, and shrunken. Compared to the control, C. albicans treated with flucytosine was softer and initially showed a greater adhesive force. Conversely, C. albicans treated with amphotericin B was harder and had a lower adhesive force. In both cases, the surface roughness increased as the treatment time increased. The relationships between morphological changes and the drugs were observed by AFM clearly; the surface of C. albicans treated with flucytosine underwent membrane collapse, expansion of holes, and shrinkage, while the membranes of cells treated with amphotericin B peeled off. According to these observations, the death process of C. albicans was divided into 4 phases, CDP0, CDP1, CDP2, and CDP4, which were determined based on morphological changes. Our results could be employed to further investigate the antifungal activity of compounds derived from natural sources
Sequence-Specific Features of Short Double-Strand, Blunt-End RNAs Have RIG-I- and Type 1 Interferon-Dependent or -Independent Anti-Viral Effects
Pathogen-associated molecular patterns, including cytoplasmic DNA and double-strand (ds)RNA trigger the induction of interferon (IFN) and antiviral states protecting cells and organisms from pathogens. Here we discovered that the transfection of human airway cell lines or non-transformed fibroblasts with 24mer dsRNA mimicking the cellular micro-RNA (miR)29b-1* gives strong anti-viral effects against human adenovirus type 5 (AdV-C5), influenza A virus X31 (H3N2), and SARS-CoV-2. These anti-viral effects required blunt-end complementary RNA strands and were not elicited by corresponding single-strand RNAs. dsRNA miR-29b-1* but not randomized miR-29b-1* mimics induced IFN-stimulated gene expression, and downregulated cell adhesion and cell cycle genes, as indicated by transcriptomics and IFN-I responsive Mx1-promoter activity assays. The inhibition of AdV-C5 infection with miR-29b-1* mimic depended on the IFN-alpha receptor 2 (IFNAR2) and the RNA-helicase retinoic acid-inducible gene I (RIG-I) but not cytoplasmic RNA sensors MDA5 and ZNFX1 or MyD88/TRIF adaptors. The antiviral effects of miR29b-1* were independent of a central AUAU-motif inducing dsRNA bending, as mimics with disrupted AUAU-motif were anti-viral in normal but not RIG-I knock-out (KO) or IFNAR2-KO cells. The screening of a library of scrambled short dsRNA sequences identified also anti-viral mimics functioning independently of RIG-I and IFNAR2, thus exemplifying the diverse anti-viral mechanisms of short blunt-end dsRNAsThe work was supported by the Swiss National Science Foundation (31003A_179256/1
to UFG, and 320030_205097 to JPS), the Swiss National Science Foundation SystemsX RTD InfectX
(51RT 0_126008 to UFG and CvM), and the University Research Priority Program of the University of
Zurich (URPP) ITINERARE – Innovative Therapies in Rare Diseases to JPS.Peer reviewe
Multidifferential study of identified charged hadron distributions in -tagged jets in proton-proton collisions at 13 TeV
Jet fragmentation functions are measured for the first time in proton-proton
collisions for charged pions, kaons, and protons within jets recoiling against
a boson. The charged-hadron distributions are studied longitudinally and
transversely to the jet direction for jets with transverse momentum 20 GeV and in the pseudorapidity range . The
data sample was collected with the LHCb experiment at a center-of-mass energy
of 13 TeV, corresponding to an integrated luminosity of 1.64 fb. Triple
differential distributions as a function of the hadron longitudinal momentum
fraction, hadron transverse momentum, and jet transverse momentum are also
measured for the first time. This helps constrain transverse-momentum-dependent
fragmentation functions. Differences in the shapes and magnitudes of the
measured distributions for the different hadron species provide insights into
the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any
supplementary material and additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb
public pages
Study of the decay
The decay is studied
in proton-proton collisions at a center-of-mass energy of TeV
using data corresponding to an integrated luminosity of 5
collected by the LHCb experiment. In the system, the
state observed at the BaBar and Belle experiments is
resolved into two narrower states, and ,
whose masses and widths are measured to be where the first uncertainties are statistical and the second
systematic. The results are consistent with a previous LHCb measurement using a
prompt sample. Evidence of a new
state is found with a local significance of , whose mass and width
are measured to be and , respectively. In addition, evidence of a new decay mode
is found with a significance of
. The relative branching fraction of with respect to the
decay is measured to be , where the first
uncertainty is statistical, the second systematic and the third originates from
the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb
public pages
- …