3,831 research outputs found

    High capacity associative memory with bipolar and binary, biased patterns

    Get PDF
    The high capacity associative memory model is interesting due to its significantly higher capacity when compared with the standard Hopfield model. These networks can use either bipolar or binary patterns, which may also be biased. This paper investigates the performance of a high capacity associative memory model trained with biased patterns, using either bipolar or binary representations. Our results indicate that the binary network performs less well under low bias, but better in other situations, compared with the bipolar network.Peer reviewe

    Evolving spiking neural networks for temporal pattern recognition in the presence of noise

    Get PDF
    Creative Commons - Attribution-NonCommercial-NoDerivs 3.0 United StatesNervous systems of biological organisms use temporal patterns of spikes to encode sensory input, but the mechanisms that underlie the recognition of such patterns are unclear. In the present work, we explore how networks of spiking neurons can be evolved to recognize temporal input patterns without being able to adjust signal conduction delays. We evolve the networks with GReaNs, an artificial life platform that encodes the topology of the network (and the weights of connections) in a fashion inspired by the encoding of gene regulatory networks in biological genomes. The number of computational nodes or connections is not limited in GReaNs, but here we limit the size of the networks to analyze the functioning of the networks and the effect of network size on the evolvability of robustness to noise. Our results show that even very small networks of spiking neurons can perform temporal pattern recognition in the presence of input noiseFinal Published versio

    The Effect of Different Forms of Synaptic Plasticity on Pattern Recognition in the Cerebellar Cortex

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright Springer.Many cerebellar learning theories assume that long-term depression (LTD) of synapses between parallel fibres (PFs) and Purkinje cells (PCs) provides the basis for pattern recognition in the cerebellum. Previous work has suggested that PCs can use a novel neural code based on the duration of silent periods. These simulations have used a simplified learning rule, where the synaptic conductance was halved each time a pattern was learned. However, experimental studies in cerebellar slices show that the synaptic conductance saturates and is rarely reduced to less than 50% of its baseline value. Moreover, the previous simulations did not include plasticity of the synapses between inhibitory interneurons and PCs. Here we study the effect of LTD saturation and inhibitory synaptic plasticity on pattern recognition in a complex PC model. We find that the PC model is very sensitive to the value at which LTD saturates, but is unaffected by inhibitory synaptic plasticity.Peer reviewe

    Connection Strategies in Associative Memory Models

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright Springer.The problem we address in this paper is that of finding effective and parsimonious patterns of connectivity in sparse associative memories. This problem must be addressed in real neuronal systems, so results in artificial systems could throw light on real systems. We show that there are efficient patterns of connectivity and that these patterns are effective in models with either spiking or non-spiking neurons. This suggests that there may be some underlying general principles governing good connectivity in such networks.Peer reviewe

    Coefficient of tangential restitution for the linear dashpot model

    Full text link
    The linear dashpot model for the inelastic normal force between colliding spheres leads to a constant coefficient of normal restitution, ϵn=\epsilon_n=const., which makes this model very popular for the investigation of dilute and moderately dense granular systems. For two frequently used models for the tangential interaction force we determine the coefficient of tangential restitution ϵt\epsilon_t, both analytically and by numerical integration of Newton's equation. Although ϵn=\epsilon_n=const. for the linear-dashpot model, we obtain pronounced and characteristic dependencies of the tangential coefficient on the impact velocity ϵt=ϵt(g)\epsilon_t=\epsilon_t(\vec{g}). The results may be used for event-driven simulations of granular systems of frictional particles.Comment: 12 pages, 12 figure

    Expedition to the Lena River in July/August 1994

    Get PDF
    corecore