105 research outputs found
PCNNA: A Photonic Convolutional Neural Network Accelerator
Convolutional Neural Networks (CNN) have been the centerpiece of many
applications including but not limited to computer vision, speech processing,
and Natural Language Processing (NLP). However, the computationally expensive
convolution operations impose many challenges to the performance and
scalability of CNNs. In parallel, photonic systems, which are traditionally
employed for data communication, have enjoyed recent popularity for data
processing due to their high bandwidth, low power consumption, and
reconfigurability. Here we propose a Photonic Convolutional Neural Network
Accelerator (PCNNA) as a proof of concept design to speedup the convolution
operation for CNNs. Our design is based on the recently introduced silicon
photonic microring weight banks, which use broadcast-and-weight protocol to
perform Multiply And Accumulate (MAC) operation and move data through layers of
a neural network. Here, we aim to exploit the synergy between the inherent
parallelism of photonics in the form of Wavelength Division Multiplexing (WDM)
and sparsity of connections between input feature maps and kernels in CNNs.
While our full system design offers up to more than 3 orders of magnitude
speedup in execution time, its optical core potentially offers more than 5
order of magnitude speedup compared to state-of-the-art electronic
counterparts.Comment: 5 Pages, 6 Figures, IEEE SOCC 201
Temperature Dependence of a Sub-wavelength Compact Graphene Plasmon-Slot Modulator
We investigate a plasmonic electro-optic modulator with an extinction ratio
exceeding 1 dB/um by engineering the optical mode to be in-plane with the
graphene layer, and show how lowering the operating temperature enables steeper
switching. We show how cooling Graphene enables steeping thus improving dynamic
energy consumption. Further, we show that multi-layer Graphene integrated with
a plasmonic slot waveguide allows for in-plane electric field components, and
3-dB device lengths as short as several hundred nanometers only. Compact
modulators approaching electronic length-scales pave a way for ultra-dense
photonic integrated circuits with smallest footprint
Integrated Photonic Tensor Processing Unit for a Matrix Multiply: a Review
The explosion of artificial intelligence and machine-learning algorithms,
connected to the exponential growth of the exchanged data, is driving a search
for novel application-specific hardware accelerators. Among the many, the
photonics field appears to be in the perfect spotlight for this global data
explosion, thanks to its almost infinite bandwidth capacity associated with
limited energy consumption. In this review, we will overview the major
advantages that photonics has over electronics for hardware accelerators,
followed by a comparison between the major architectures implemented on
Photonics Integrated Circuits (PIC) for both the linear and nonlinear parts of
Neural Networks. By the end, we will highlight the main driving forces for the
next generation of photonic accelerators, as well as the main limits that must
be overcome
- …