40 research outputs found

    Use of a novel Förster resonance energy transfer method to identify locations of site-bound metal ions in the U2–U6 snRNA complex

    Get PDF
    U2 and U6 snRNAs pair to form a phylogenetically conserved complex at the catalytic core of the spliceosome. Interactions with divalent metal ions, particularly Mg(II), at specific sites are essential for its folding and catalytic activity. We used a novel Förster resonance energy transfer (FRET) method between site-bound luminescent lanthanide ions and a covalently attached fluorescent dye, combined with supporting stoichiometric and mutational studies, to determine locations of site-bound Tb(III) within the human U2–U6 complex. At pH 7.2, we detected three metal-ion-binding sites in: (1) the consensus ACACAGA sequence, which forms the internal loop between helices I and III; (2) the four-way junction, which contains the conserved AGC triad; and (3) the internal loop of the U6 intra-molecular stem loop (ISL). Binding at each of these sites is supported by previous phosphorothioate substitution studies and, in the case of the ISL site, by NMR. Binding of Tb(III) at the four-way junction and the ISL sites was found to be pH-dependent, with no ion binding observed below pH 6 and 7, respectively. This pH dependence of metal ion binding suggests that the local environment may play a role in the binding of metal ions, which may impact on splicing activity

    Photoluminescence enhancement in nano-textured fluorescent SiC passivated by atomic layer deposited Al2O3 films

    Get PDF
    The influence of thickness of atomic layer deposited Al2O3 films on nanotextured fluorescent 6H-SiC passivation is investigated. The passivation effect on the light emission has been characterized by photoluminescence and time-resolved photoluminescence at room temperature. The results show that 20nm thickness of Al2O3 layer is favorable to observe a large photoluminescence enhancement (25.9%) and long carrier lifetime (0.86ms). This is a strong indication for an interface hydrogenation that takes place during post-thermal annealing. These result show that an Al2O3 layer could serve as passivation in fluorescent SiC based white LEDs applications.</jats:p

    Probing Intranuclear Environments at the Single-Molecule Level

    Get PDF
    Genome activity and nuclear metabolism clearly depend on accessibility, but it is not known whether and to what extent nuclear structures limit the mobility and access of individual molecules. We used fluorescently labeled streptavidin with a nuclear localization signal as an average-sized, inert protein to probe the nuclear environment. The protein was injected into the cytoplasm of mouse cells, and single molecules were tracked in the nucleus with high-speed fluorescence microscopy. We analyzed and compared the mobility of single streptavidin molecules in structurally and functionally distinct nuclear compartments of living cells. Our results indicated that all nuclear subcompartments were easily and similarly accessible for such an average-sized protein, and even condensed heterochromatin neither excluded single molecules nor impeded their passage. The only significant difference was a higher frequency of transient trappings in heterochromatin, which lasted only tens of milliseconds. The streptavidin molecules, however, did not accumulate in heterochromatin, suggesting comparatively less free volume. Interestingly, the nucleolus seemed to exclude streptavidin, as it did many other nuclear proteins, when visualized by conventional fluorescence microscopy. The tracking of single molecules, nonetheless, showed no evidence for repulsion at the border but relatively unimpeded passage through the nucleolus. These results clearly show that single-molecule tracking can provide novel insights into mobility of proteins in the nucleus that cannot be obtained by conventional fluorescence microscopy. Our results suggest that nuclear processes may not be regulated at the level of physical accessibility but rather by local concentration of reactants and availability of binding sites

    Die Nutzung von RefWorks aus Anwendersicht

    No full text
    Möglichkeiten des kollaborativen Arbeitens mit Refworks - Dateiimport und Schnittstellen in/zu FachdatenbankenBreme

    Spectroscopic study and evaluation of red-absorbing fluorescent dyes

    No full text
    The spectroscopic characteristics (absorption, emission, and fluorescence lifetime) of 13 commercially available red-absorbing fluorescent dyes were studied under a variety of conditions. The dyes included in this study are Alexa647, ATTO655, ATTO680, Bodipy630/650, Cy5, Cy5.5, DiD, DY-630, DY-635, DY-640, DY-650, DY-655, and EVOblue30. The thorough characterization of this class of dyes will facilitate selection of the appropriate red-absorbing fluorescent labels for applications in fluorescence assays. The influences of polarity, viscosity, and the addition of detergent (Tween20) on the spectroscopic properties were investigated, and fluorescence correlation spectroscopy (FCS) was utilized to assess the photophysical properties of the dyes under high excitation conditions. The dyes can be classified into groups based on the results presented. For example, while the fluorescence quantum yield of ATTO655, ATTO680, and EVOblue30 is primarily controlled by the polarity of the surrounding medium, more hydrophobic and structurally flexible dyes of the DY-family are strongly influenced by the viscosity of the medium and the addition of detergents. Covalent binding of the dyes to biotin and subsequent addition of streptavidin results in reversible fluorescence quenching or changes in the relaxation time of other photophysical processes of some dyes, most likely due to interactions with tryptophan residues in the streptavin binding site

    Direct observation of single protein molecules in aqueous solution.

    No full text
    Single molecule tracking (SMT) by fluorescence video microscopy has matured to be a well established method in the last few years. In this report we demonstrate the imaging and tracking of single protein molecules in a phosphate/Hepes buffer with high sensitivity at frame rates of 350 Hz
    corecore