22 research outputs found

    Data-driven imaging in anisotropic media

    No full text
    Anisotropic materials are being used increasingly in high performance industrial applications, particularly in the aeronautical and nuclear industries. Some important examples of these materials are composites, single-crystal and heavy-grained metals. Ultrasonic array imaging in these materials requires exact knowledge of the anisotropic material properties. Without this information, the images can be adversely affected, causing a reduction in defect detection and characterization performance. The imaging operation can be formulated in two consecutive and reciprocal focusing steps, i.e., focusing the sources and then focusing the receivers. Applying just one of these focusing steps yields an interesting intermediate domain. The resulting common focus point gather (CFP-gather) can be interpreted to determine the propagation operator. After focusing the sources, the observed travel-time in the CFP-gather describes the propagation from the focus point to the receivers. If the correct propagation operator is used, the measured traveltimes should be the same as the time-reversed focusing operator due to reciprocity. This makes it possible to iteratively update the focusing operator using the data only and allows the material to be imaged without explicit knowledge of the anisotropic material parameters. Furthermore, the determined propagation operator can also be used to invert for the anisotropic medium parameters. This paper details the proposed technique and demonstrates its use on simulated array data from a specimen of Inconel single-crystal alloy commonly used in the aeronautical and nuclear industries

    Ultrasonic multi-skip tomography for pipe inspection

    No full text
    The inspection of wall loss corrosion is difficult at pipe supports due to limited accessibility. The recently developed ultrasonic Multi-Skip screening technique is suitable for this problem. The method employs ultrasonic transducers in a pitch-catch geometry positioned on opposite sides of the pipe support. Shear waves are transmitted in the axial direction within the pipe wall, reflecting multiple times between the inner and outer surfaces before reaching the receivers. Along this path, the signals accumulate information on the integral wall thickness (e.g., via variations in travel time). The method is very sensitive in detecting the presence of wall loss, but it is difficult to quantify both the extent and depth of the loss. Multi-skip tomography has been developed to reconstruct the wall thickness profile along the axial direction of the pipe. The method uses model-based full wave field inversion; this consists of a forward model for predicting the measured wave field and an iterative process that compares the predicted and measured wave fields and minimizes the differences with respect to the model parameters (i.e., the wall thickness profile). Experimental results are very encouraging. Various defects (slot and flat bottom hole) are reconstructed using the tomographic inversion. The general shape and width are well recovered. The current sizing accuracy is in the order of 1 mm

    Recent developments in guided wave travel time tomography

    No full text
    The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography had been developed to create a map of the wall thickness using the travel times of guided waves. It can be used for both monitoring and for inspection of pipe-segments that are difficult to access, for instance at the location of pipe-supports. An important outcome of the tomography is the minimum remaining wall thickness, as this is critical in the scheduling of a replacement of the pipe-segment. In order to improve the sizing accuracy we have improved the tomography scheme. A number of major improvements have been realized allowing to extend the application envelope to pipes with a larger wall thickness and to larger distances between the transducer rings. Simulation results indicate that the sizing accuracy has improved and that is now possible to have a spacing of 8 meter between the source-ring and the receiver-ring. Additionally a reduction of the number of sensors required might be possible as well. © 2014 AIP Publishing LLC

    1D profiling using highly dispersive guided waves

    No full text
    Corrosion is one of the industries major issues regarding the integrity of assets. Currently inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Last year an approach was presented using a phase inversion of guided waves that propagated around the circumference of a pipe. This approach works well for larger corrosion spots, but shows significant under-sizing of small spots due to lack of sufficient phase rotation. In this paper the use of arrival time and amplitude loss of higher order circumferential passes is evaluated. Using higher order passes increases sensitivity for sizing smaller defects. Different defect profiles are assumed and the change in arrival time and amplitude loss are calculated using a wave equation based approach for different defect widths and depths. This produces a differential travel time and amplitude change map as function of defect depth and defect width. The actually measured travel time change and amplitude change produces two contours in these maps. Calculating the intersection point gives the defect dimensions. The contours for amplitude loss and travel time change are quite orthogonal, this yields a good discrimination between deep and shallow defects. The approach is evaluated using experimental data from different pipes contain artificial and real defects. © 2017 Author(s). QNDE Program

    1-D profiling using highly dispersive guided waves

    No full text
    Corrosion is one of the industries major issues regarding the integrity of assets. Currently, inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Guided wave tomography has been developed to reconstruct the wall thickness of steel pipes. In case of bottom of the line corrosion, i.e., a single corrosion pit, a simpler approach may be followed. Data is collected in a pitch-catch configuration at the 12 o'clock position using highly dispersive guided waves. After dispersion correction the data collapses to a short pulse, any residual dispersion indicates wall loss. The phase spectrum is used to invert for the wall thickness profile in the circumferential direction, assuming a Gaussian defect profile. The approach is evaluated on numerically simulated and on measured data. The method is intended for rapid, semi-quantitative screening of pipes

    Guided Wave Travel Time Tomography for Bends

    No full text
    The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography has been developed to map the wall thickness using the travel times of guided waves. The method has been demonstrated for straight pipes. The extension of this method to bends is not straightforward because natural focusing occurs due to geometrical path differences. This yields a phase jump, which complicates travel time picking. Because ray-tracing is no longer sufficient to predict the travel times a recursive wave field extrapolation has been developed. The method uses a short spatial convolution operator to propagate a wave field through a bend. The method allows to calculate the wave field at the detector ring, including the phase jump as a consequence of the natural focusing. The recursive wave field extrapolation is done in the space-frequency domain. Therefore dispersion effects can be included easily in the forward modeling. Comparison with measurements shows the accuracy of the method. The tomographic reconstruction is based on the wave field extrapolation kernel

    Characterization of suspensions by ultrasonic reflection measurements

    No full text
    The ultrasonic attenuation and the ultrasonic backscatter coefficient from suspensions are known to be correlated with the concentration of particles and the particle size distribution. However, for suspensions with a very low particle concentration (<500 ppm) the effect of the particles on the attenuation or backscatter coefficient is in general not significant. In this paper a new ultrasonic technique is presented, which can be applied to characterize suspensions with a very low concentration of particles. The method is based on ultrasonic reflection from individual particles passing through a small measurement volume. Such a small volume is achieved by applying a focused transducer and windowing of the time signal. The amplitude of a received reflection depends on the position of the reflecting particle in the measurement volume and on the dimensions and shape of the particle. A forward analytical model describes the relations between the suspension properties (particle size distribution and particle concentration) and the measured histogram of amplitudes. The particle size distribution and concentration are obtained from the measurements via numerical inversion of the forward model. Results of measurements on a well-controlled suspension demonstrate the feasibility of this technique

    Data interpolation beyond aliasing

    Get PDF
    Proper spatial sampling is critical for many applications. If the sampling criterion is not met, artifacts appear for example in images. Last year an iterative approach was presented using wave field extrapolation to interpolate spatially aliased signals. The main idea behind this approach is that after inverse wave field extrapolation the signal is concentrated in a small region with a high amplitude, while the aliasing artifacts are spread-out through the domain. Inverse wave field extrapolation focusses optimally at one depth, making the performance of the reconstruction depth dependent. Obviously the method can be repeated for several depths. This year we show an alternative approach using an imaging/inverse-imaging approach. The demonstration of this approach is extended to 2D-arrays where the sampling limitations are even more critical. Moreover we show in this paper that the interpolation approach is not limited to near-field data, but can also be used on far-field data (plane waves). The Radon transform can be used for plane waves to focus the data. The approach is demonstrated using modeled and measured data for linear and 2D arrays

    A liquid-independent volume flow measurement principle

    No full text
    A novel flow measurement principle is presented enabling non-intrusive volume flow measurements of liquids in the ml/min range. It is based on an opto-acoustical time-of-flight principle, where the time interval is recorded in which a thermal label travels a known distance through a flow channel. Big advantages are the insensitivity to temperature drift and the fact that user calibration is unnecessary. The paper presents a set of physics-based criteria that define the working range of the measurement principle. A prototype of a flow meter was developed and evaluated in a test rig with flows of water, isopropyl alcohol (IPA) and mixtures of both liquids. Pure water and IPA flows of 0.1 to 2 ml min-1 were measured and found to coincide with the reference flows within 4%. The root-mean-square (RMS) value of the fluctuations did not exceed 3%. For flows of 2 ml min-1 the limited power of the laser source caused deviations of 7% with 5% fluctuations. Finally, flow measurements were done in water-IPA mixtures with concentrations between 10% and 90%-w/w at a flow rate of 15 g h-1 (≈0.3 ml min-1). The ratio of measured and reference flow appeared to be 4% to 5% below the theoretical value, but it was hardly a function of mixture composition. Hence, liquid independence of the measurement principle was proven. © 2010 IOP Publishing Ltd
    corecore