116 research outputs found

    Reconsidering the One Leptoquark solution: flavor anomalies and neutrino mass

    Full text link
    We reconsider a model introducing a scalar leptoquark ϕ∼(3,1,−1/3)\phi \sim (\mathbf{3}, \mathbf{1}, -1/3) to explain recent deviations from the standard model in semileptonic BB decays. The leptoquark can accommodate the persistent tension in the decays Bˉ→D(∗)τνˉ\bar{B}\rightarrow D^{(*)}\tau \bar{\nu} as long as its mass is lower than approximately 10 TeV10 \text{ TeV}, and we show that a sizeable Yukawa coupling to the right-chiral tau lepton is necessary for an acceptable explanation. Agreement with the measured Bˉ→D(∗)τνˉ\bar{B}\rightarrow D^{(*)}\tau \bar{\nu} rates is mildly compromised for parameter choices addressing the tensions in b→sμμb \to s \mu \mu, where the model can significantly reduce the discrepancies in angular observables, branching ratios and the lepton-flavor-universality observables RKR_K and RK∗R_{K^*}. The leptoquark can also reconcile the predicted and measured value of the anomalous magnetic moment of the muon and appears naturally in models of radiative neutrino mass derived from lepton-number violating effective operators. As a representative example, we incorporate the particle into an existing two-loop neutrino mass scenario derived from a dimension-nine operator. In this specific model, the structure of the neutrino mass matrix provides enough freedom to explain the small masses of the neutrinos in the region of parameter space dictated by agreement with the anomalies in Bˉ→D(∗)τνˉ\bar{B}\rightarrow D^{(*)}\tau \bar{\nu}, but not the b→sb \to s transition. This is achieved without excessive fine-tuning in the parameters important for neutrino mass.Comment: 43 pages, 17 figures, 3 tables; corrected fit contours in fig. 1

    Clash of symmetries on the brane

    Get PDF
    If our 3+1-dimensional universe is a brane or domain wall embedded in a higher dimensional space, then a phenomenon we term the ``clash of symmetries'' provides a new method of breaking some continuous symmetries. A global Gcts⊗GdiscreteG_{\text{cts}} \otimes G_{\text{discrete}} symmetry is spontaneously broken to Hcts⊗HdiscreteH_{\text{cts}} \otimes H_{\text{discrete}}, where the continuous subgroup HctsH_{\text{cts}} can be embedded in several different ways in the parent group GctsG_{\text{cts}}, and Hdiscrete<GdiscreteH_{\text{discrete}} < G_{\text{discrete}}. A certain class of topological domain wall solutions connect two vacua that are invariant under {\it differently embedded} HctsH_{\text{cts}} subgroups. There is then enhanced symmetry breakdown to the intersection of these two subgroups on the domain wall. This is the ``clash''. In the brane limit, we obtain a configuration with HctsH_{\text{cts}} symmetries in the bulk but the smaller intersection symmetry on the brane itself. We illustrate this idea using a permutation symmetric three-Higgs-triplet toy model exploiting the distinct I−I-, U−U- and V−V-spin U(2) subgroups of U(3). The three disconnected portions of the vacuum manifold can be treated symmetrically through the construction of a three-fold planar domain wall junction configuration, with our universe at the nexus. A possible connection with E6E_6 is discussed.Comment: 30 pages, 9 embedded figure

    Baryon Number Violating Scalar Diquarks at the LHC

    Full text link
    Baryon number violating (BNV) processes are heavily constrained by experiments searching for nucleon decay and neutron-antineutron oscillations. If the baryon number violation occurs via the third generation quarks, however, we may be able to avoid the nucleon stability constraints, thus making such BNV interactions accessible at the LHC. In this paper we study a specific class of BNV extensions of the standard model (SM) involving diquark and leptoquark scalars. After an introduction to these models we study one promising extension in detail, being interested in particles with mass of O(TeV). We calculate limits on the masses and couplings from neutron-antineutron oscillations and dineutron decay for couplings to first and third generation quarks. We explore the possible consequences of such a model on the matter-antimatter asymmetry. We shall see that for models which break the global baryon minus lepton number symmetry, (B-L), the most stringent constraints come from the need to preserve a matter-antimatter asymmetry. That is, the BNV interaction cannot be introduced if it would remove the matter-antimatter asymmetry independent of baryogenesis mechanism and temperature. Finally, we examine the phenomenology of such models at colliders such as the LHC.Comment: 10 pages, 9 figures. v2: references added, some typos corrected. v3: some small corrections to match published version, no change in conclusion

    Testable two-loop radiative neutrino mass model based on an LLQdcQdcLLQd^cQd^c effective operator

    Get PDF
    A new two-loop radiative Majorana neutrino mass model is constructed from the gauge-invariant effective operator LiLjQkdcQldcϵikϵjlL^i L^j Q^k d^c Q^l d^c \epsilon_{ik} \epsilon_{jl} that violates lepton number conservation by two units. The ultraviolet completion features two scalar leptoquark flavors and a color-octet Majorana fermion. We show that there exists a region of parameter space where the neutrino oscillation data can be fitted while simultaneously meeting flavor-violation and collider bounds. The model is testable through lepton flavor-violating processes such as μ→eγ{\mu} \to e{\gamma}, μ→eee\mu \to eee, and μN→eN\mu N \to eN conversion, as well as collider searches for the scalar leptoquarks and color-octet fermion. We computed and compiled a list of necessary Passarino-Veltman integrals up to boxes in the approximation of vanishing external momenta and made them available as a Mathematica package, denoted as ANT.Comment: 42 pages, 11 figures, typo in Eq. (4.9) as well as wrong chirality structures in Secs. 4.5 and 5.2 corrected, final results unchange

    BPS solitons in Lifshitz field theories

    Full text link
    Lorentz-invariant scalar field theories in d+1 dimensions with second-order derivative terms are unable to support static soliton solutions that are both finite in energy and stable for d>2, a result known as Derrick's theorem. Lifshitz theories, which introduce higher-order spatial derivatives, need not obey Derrick's theorem. We construct stable, finite-energy, static soliton solutions in Lifshitz scalar field theories in 3+1 dimensions with dynamical critical exponent z=2. We exhibit three generic types: non-topological point defects, topological point defects, and topological strings. We focus mainly on Lifshitz theories that are defined through a superpotential and admit BPS solutions. These kinds of theories are the bosonic sectors of supersymmetric theories derived from the stochastic dynamics of a scalar field theory in one higher dimension. If nature obeys a Lifshitz field theory in the ultraviolet, then the novel topological defects discussed here may exist as relics from the early universe. Their discovery would prove that standard field theory breaks down at short distance scales.Comment: 14 pages, 4 figures; v2: references added and the x-axis scale of each figure has been change

    Kink-induced symmetry breaking patterns in brane-world SU(3)^3 trinification models

    Full text link
    The trinification grand unified theory (GUT) has gauge group SU(3)^3 and a discrete symmetry permuting the SU(3) factors. In common with other GUTs, the attractive nature of the fermionic multiplet assignments is obviated by the complicated multi-parameter Higgs potential apparently needed for phenomenological reasons, and also by vacuum expectation value (VEV) hierarchies within a given multiplet. This motivates the rigorous consideration of Higgs potentials, symmetry breaking patterns and alternative symmetry breaking mechanisms in models with this gauge group. Specifically, we study the recently proposed ``clash of symmetries'' brane-world mechanism to see if it can help with the symmetry breaking conundrum. This requires a detailed analysis of Higgs potential global minima and kink or domain wall solutions interpolating between the disconnected global minima created through spontaneous discrete symmetry breaking. Sufficiently long-lived metastable kinks can also be considered. We develop what we think is an interesting, albeit speculative, brane-world scheme whereby the hierarchical symmetry breaking cascade, trinification to left-right symmetry to the standard model to colour cross electromagnetism, may be induced without an initial hierarchy in vacuum expectation values. Another motivation for this paper is simply to continue the exploration of the rich class of kinks arising in models that are invariant under both discrete and continuous symmetries.Comment: 12 pages, RevTex, references adde

    Further studies on relic neutrino asymmetry generation II: a rigorous treatment of repopulation in the adiabatic limit

    Full text link
    We derive an approximate relic neutrino asymmetry evolution equation that systematically incorporates repopulation processes from the full quantum kinetic equations (QKEs). It is shown that in the collision dominant epoch, the said equation reduces precisely to the expression obtained previously from the static/adiabatic approximation. The present treatment thus provides a rigorous justification for the seemingly incongruous assumptions of a negligible repopulation function and instantaneous repopulation sometimes employed in earlier works.Comment: RevTeX, 11 pages, no figure
    • …
    corecore