2,722 research outputs found
Chord Label Personalization through Deep Learning of Integrated Harmonic Interval-based Representations
The increasing accuracy of automatic chord estimation systems, the
availability of vast amounts of heterogeneous reference annotations, and
insights from annotator subjectivity research make chord label personalization
increasingly important. Nevertheless, automatic chord estimation systems are
historically exclusively trained and evaluated on a single reference
annotation. We introduce a first approach to automatic chord label
personalization by modeling subjectivity through deep learning of a harmonic
interval-based chord label representation. After integrating these
representations from multiple annotators, we can accurately personalize chord
labels for individual annotators from a single model and the annotators' chord
label vocabulary. Furthermore, we show that chord personalization using
multiple reference annotations outperforms using a single reference annotation.Comment: Proceedings of the First International Conference on Deep Learning
and Music, Anchorage, US, May, 2017 (arXiv:1706.08675v1 [cs.NE]
Hydrodinamics of liquid film on cylindrical surface
A theoretical study of the film movement of the liquid phase on the surface of a permeable cylinder under the influence of the mass forces of gravity and the swirling gas flow has been carried out. The differential equations of motion were determined for the first time, the exact solutions for the velocity components provided adhesion film on the surface of permeable cylinder and equality of shear stresses at the interface were calculated to determine the thickness of the film and its pressure on the cylindrical surface. Theimpact of the outflow of the liquid phase on the hydrodynamics of film flow was analyzed. The resulting mathematical model allows taking into account the hydrodynamics of the film during the filtration, separation and heat exchange processes
Grain Dynamics In Magnetized Interstellar Gas
Interstellar medium is turbulent and this induces relative motions of dust
grains. We calculate relative velocities of charged grains in a partially
ionized magnetized gas. We account for anisotropy of magnetohydrodynamic (MHD)
turbulence, grain coupling with magnetic field, and the turbulence cutoff
arising from the ambipolar drag. We obtain grain velocities for turbulence with
parameters consistent with those in HI and dark clouds. Those velocities are
smaller than those in earlier papers, where MHD effects were disregarded.
Finally, we compare grain velocities arising from photoelectric emission,
radiation pressure and thrusts from molecular hydrogen formation. We conclude
that turbulence should prevent segregation of grains of different sizes.Comment: 11 pages, 1 figure, ApJL, in pres
Spectrum of cosmic rays, produced in supernova remnants
Nonlinear kinetic theory of cosmic ray (CR) acceleration in supernova
remnants is employed to calculate CR spectra. The magnetic field in SNRs is
assumed to be significantly amplified by the efficiently accelerating nuclear
CR component. It is shown that the calculated CR spectra agree in a
satisfactory way with the existing measurements up to the energy eV.
The power law spectrum of protons extends up to the energy eV
with a subsequent exponential cutoff. It gives a natural explanation for the
observed knee in the Galactic CR spectrum. The maximum energy of the
accelerated nuclei is proportional to their charge number . Therefore the
break in the Galactic CR spectrum is the result of the contribution of
progressively heavier species in the overall CR spectrum so that at
eV the CR spectrum is dominated by iron group nuclei. It is shown that this
component plus a suitably chosen extragalactic CR component can give a
consistent description for the entire Galactic CR spectrum.Comment: 4 pages with emulateapj, 3 figures, accepted for publication in the
Astrophysical Journal Letter
Effect of Magnetization Inhomogeneity on Magnetic Microtraps for Atoms
We report on the origin of fragmentation of ultracold atoms observed on a
permanent magnetic film atom chip. A novel technique is used to characterize
small spatial variations of the magnetic field near the film surface using
radio frequency spectroscopy of the trapped atoms. Direct observations indicate
the fragmentation is due to a corrugation of the magnetic potential caused by
long range inhomogeneity in the film magnetization. A model which takes into
account two-dimensional variations of the film magnetization is consistent with
the observations.Comment: 4 pages, 4 figure
A quasi-Lagrangian coordinate system based on high resolution tracer observations: implementation for the Antarctic polar vortex
In order to quantitatively analyse the chemical and dynamical evolution of the polar vortex it has proven extremely useful to work with coordinate systems that follow the vortex flow. We propose here a two-dimensional quasi-Lagrangian coordinate system {X i, delta X i}, based on the mixing ratio of a long-lived stratospheric trace gas i, and its systematic use with i = N2O, in order to describe the structure of a well-developed Antarctic polar vortex. In the coordinate system {X i, delta X i} the mixing ratio X i is the vertical coordinate and delta X i = X i(theta) - X i vort(theta) is the meridional coordinate (X i vort(theta) being a vertical reference profile in the vortex core). The quasi-Lagrangian coordinates {X i, delta X i} persist for much longer time than standard isentropic coordinates, potential temperature theta and equivalent latitude Phi e, do not require explicit reference to geographic space, and can be derived directly from high-resolution in situ measurements. They are therefore well-suited for studying the evolution of the Antarctic polar vortex throughout the polar winter with respect to the relevant chemical and microphysical processes. By using the introduced coordinate system {X N2O, delta X N2O} we analyze the well-developed Antarctic vortex investigated during the APE-GAIA (Airborne Polar Experiment – Geophysica Aircraft in Antarctica – 1999) campaign (Carli et al., 2000). A criterion, which uses the local in-situ measurements of X i=X i(theta) and attributes the inner vortex edge to a rapid change (delta-step) in the meridional profile of the mixing ratio X i, is developed to determine the (Antarctic) inner vortex edge. In turn, we suggest that the outer vortex edge of a well-developed Antarctic vortex can be attributed to the position of a local minimum of the X H2O gradient in the polar vortex area. For a well-developed Antarctic vortex, the delta X N2O-parametrization of tracer-tracer relationships allows to distinguish the tracer inter-relationships in the vortex core, vortex boundary region and surf zone and to examine their meridional variation throughout these regions. This is illustrated by analyzing the tracer-tracer relationships X i : X N2O obtained from the in-situ data of the APE-GAIA campaign for i = CFC-11, CFC-12, H-1211 and SF6. A number of solitary anomalous points in the CFC-11 : N2O correlation, observed in the Antarctic vortex core, are interpreted in terms of small-scale cross-isentropic dispersion
- …