111 research outputs found
Alternaria Spores in the Air Across Europe: Abundance, Seasonality and Relationships with Climate, Meteorology and Local Environment
We explored the temporal and spatial variations in airborne Alternaria spore quantitative and phenological features in Europe using 23 sites with annual time series between 3 and 15 years. The study covers seven countries and four of the main biogeographical regions in Europe. The observations were obtained with Hirst-type spore traps providing time series with daily records. Site locations extend from Spain in the south to Denmark in the north and from England in the West to Poland in the East. The study is therefore the largest assessment ever carried out for Europe concerning Alternaria. Aerobiological data were investigated for temporal and spatial patterns in their start and peak season dates and their spore indices. Moreover, the effects of climate were checked using meteorological data for the same period, using a crop growth model. We found that local climate, vegetation patterns and management of landscape are governing parameters for the overall spore concentration, while the annual variations caused by weather are of secondary importance but should not be neglected. The start of the Alternaria spore season varies by several months in Europe, but the peak of the season is more synchronised in central northern Europe in the middle of the summer, while many southern sites have peak dates either earlier or later than northern Europe. The use of a crop growth model to explain the start and peak of season suggests that such methods could be useful to describe Alternaria seasonality in areas with no available observations
Genetic variation for sensitivity to a thyme monoterpene in associated plant species
Recent studies have shown that plant allelochemicals can have profound effects on the performance of associated species, such that plants with a history of co-existence with “chemical neighbour” plants perform better in their presence compared to naïve plants. This has cast new light on the complexity of plant–plant interactions and plant communities and has led to debates on whether plant communities are more co-evolved than traditionally thought. In order to determine whether plants may indeed evolve in response to other plants’ allelochemicals it is crucial to determine the presence of genetic variation for performance under the influence of specific allelochemicals and show that natural selection indeed operates on this variation. We studied the effect of the monoterpene carvacrol—a dominant compound in the essential oil of Thymus pulegioides—on three associated plant species originating from sites where thyme is either present or absent. We found the presence of genetic variation in both naïve and experienced populations for performance under the influence of the allelochemical but the response varied among naïve and experienced plant. Plants from experienced populations performed better than naïve plants on carvacrol soil and contained significantly more seed families with an adaptive response to carvacrol than naïve populations. This suggests that the presence of T. pulegioides can act as a selective agent on associated species, by favouring genotypes which perform best in the presence of its allelochemicals. The response to the thyme allelochemical varied from negative to neutral to positive among the species. The different responses within a species suggest that plant–plant interactions can evolve; this has implications for community dynamics and stability
Airborne Alternaria and Cladosporium Fungal Spores in Europe: Forecasting Possibilities and Relationships with Meteorological Parameters
Airborne fungal spores are prevalent components of bioaerosols with a large impact on ecology, economy and health. Their major socioeconomic effects could be reduced by accurate and timely prediction of airborne spore concentrations. The main aim of this study was to create and evaluate models of Alternaria and Cladosporium spore concentrations based on data on a continental scale. Additional goals included assessment of the level of generalization of the models in space and description of the main meteorological factors influencing fungal spore concentrations.
Aerobiological monitoring was carried out at 18 sites in six countries across Europe over 3 to 21 years depending on site. Quantile random forest modelling was used to predict spore concentrations values. Generalization of the Alternaria and Cladosporium models was tested using (i) one model for all the sites, (ii) models for groups of sites, and (iii) models for individual sites.
The study revealed the possibility of reliable prediction of fungal spore levels using gridded meteorological data. The classification models also showed the capacity for providing larger scale predictions of fungal spore concentrations. Regression models were distinctly less accurate than classification models due to several factors, including measurement errors and distinct day-to-day changes of concentrations. Temperature and vapour pressure proved to be the most important variables in the regression and classification models of Alternaria and Cladosporium spore concentrations.
Accurate and operational daily-scale predictive models of bioaerosol abundances contribute to the assessment and evaluation of relevant exposure and consequently more timely and efficient management of phytopathogenic and of human allergic diseases
Sastav eteričnog ulja biljke Teucrium scordium L.
Composition of the essential oil obtained from dried flowering aerial parts of Teucrium scordium L. (Labiatae) was analyzed by GC and GC/MS. Fifty-six components were identified in the essential oil of T. scordium. The major constituents of the oil were betha-caryophyllene (22.8%), (E)-betha-farnesene (10.4%), caryophyllene oxide (8.6%), 1,8-cineole (6.1%) and betha-eudesmol (5.1%).Sastav eteričnog ulja iz osušenih nadzemnih dijelova biljke Teucrium scordium L. (Labiatae) u cvatu analiziran je pomoću GC i GC/MS. Identificirano je pedeset šest komponenata, a najvažniji sastojci ulja su beta-kariofilen (22,8%), (E)-beta-farnesen (10,4%), oksid kariofilen (8,6%), 1,8-cineol (6,1%) i beta-eudezmol (5,1%)
Wild food plants of popular use in Sicily
In the present work the authors report the result of their food ethnobotanical researches, which have been carried out in Sicily during the last thirty years. Data concerning 188 wild species used in the traditional Sicilian cuisine are reported. The authors underline those species that are partially or completely unknown for their culinary use and they illustrate other species that local inhabitants suggested in the prevention or treatment of symptomatologies caused by a refined diet, poor in vegetables. These data want to contribute to avoid the loss of traditional knowledge on uses and recipes concerning wild food botanicals, and to encourage further studies for those species that have not yet been sufficiently researched in their food chemical and nutritional profile. These studies may also suggest new applications for a few botanicals in medico-nutritional fields. The work includes also a short review of the seaweeds and mushrooms traditionally gathered and consumed in Sicily
Airborne Alternaria and Cladosporium Fungal Spores in Europe: Forecasting Possibilities and Relationships with Meteorological Parameters
Airborne fungal spores are prevalent components of bioaerosols with a large impact on ecology, economy and health. Their major socioeconomic effects could be reduced by accurate and timely prediction of airborne spore concentrations. The main aim of this study was to create and evaluate models of Alternaria and Cladosporium spore concentrations based on data on a continental scale. Additional goals included assessment of the level of generalization of the models in space and description of the main meteorological factors influencing fungal spore concentrations.
Aerobiological monitoring was carried out at 18 sites in six countries across Europe over 3 to 21 years depending on site. Quantile random forest modelling was used to predict spore concentrations values. Generalization of the Alternaria and Cladosporium models was tested using (i) one model for all the sites, (ii) models for groups of sites, and (iii) models for individual sites.
The study revealed the possibility of reliable prediction of fungal spore levels using gridded meteorological data. The classification models also showed the capacity for providing larger scale predictions of fungal spore concentrations. Regression models were distinctly less accurate than classification models due to several factors, including measurement errors and distinct day-to-day changes of concentrations. Temperature and vapour pressure proved to be the most important variables in the regression and classification models of Alternaria and Cladosporium spore concentrations.
Accurate and operational daily-scale predictive models of bioaerosol abundances contribute to the assessment and evaluation of relevant exposure and consequently more timely and efficient management of phytopathogenic and of human allergic diseases
Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: a retrospective data analysis
Background: Ongoing climate change might, through rising temperatures, alter allergenic pollen biology across the northern hemisphere. We aimed to analyse trends in pollen seasonality and pollen load and to establish whether there are specific climate-related links to any observed changes.Methods: For this retrospective data analysis, we did an extensive search for global datasets with 20 years or more of airborne pollen data that consistently recorded pollen season indices (eg, duration and intensity). 17 locations across three continents with long-term (approximately 26 years on average) quantitative records of seasonal concentrations of multiple pollen (aeroallergen) taxa met the selection criteria. These datasets were analysed in the context of recent annual changes in maximum temperature (Tmax) and minimum temperature (Tmin) associated with anthropogenic climate change. Seasonal regressions (slopes) of variation in pollen load and pollen season duration over time were compared to Tmax, cumulative degree day Tmax, Tmin, cumulative degree day Tmin, and frost-free days among all 17 locations to ascertain significant correlations.Findings: 12 (71%) of the 17 locations showed significant increases in seasonal cumulative pollen or annual pollen load. Similarly, 11 (65%) of the 17 locations showed a significant increase in pollen season duration over time, increasing, on average, 0·9 days per year. Across the northern hemisphere locations analysed, annual cumulative increases in Tmax over time were significantly associated with percentage increases in seasonal pollen load (r=0·52, p=0·034) as were annual cumulative increases in Tmin (r=0·61, p=0·010). Similar results were observed for pollen season duration, but only for cumulative degree days (higher than the freezing point [0°C or 32°F]) for Tmax (r=0·53, p=0·030) and Tmin (r=0·48, p=0·05). Additionally, temporal increases in frost-free days per year were significantly correlated with increases in both pollen load (r=0·62, p=0·008) and pollen season duration (r=0·68, p=0·003) when averaged for all 17 locations.Interpretation: Our findings reveal that the ongoing increase in temperature extremes (Tmin and Tmax) might already be contributing to extended seasonal duration and increased pollen load for multiple aeroallergenic pollen taxa in diverse locations across the northern hemisphere. This study, done across multiple continents, highlights an important link between ongoing global warming and public health—one that could be exacerbated as temperatures continue to increase.</p
Microbiology of the phyllosphere: a playground for testing ecological concepts
Many concepts and theories in ecology are highly debated, because it is often difficult to design decisive tests with sufficient replicates. Examples include biodiversity theories, succession concepts, invasion theories, coexistence theories, and concepts of life history strategies. Microbiological tests of ecological concepts are rapidly accumulating, but have yet to tap into their full potential to complement traditional macroecological theories. Taking the example of microbial communities on leaf surfaces (i.e. the phyllosphere), we show that most explorations of ecological concepts in this field of microbiology focus on autecology and population ecology, while community ecology remains understudied. Notable exceptions are first tests of the island biogeography theory and of biodiversity theories. Here, the phyllosphere provides the unique opportunity to set up replicated experiments, potentially moving fields such as biogeography, macroecology, and landscape ecology beyond theoretical and observational evidence. Future approaches should take advantage of the great range of spatial scales offered by the leaf surface by iteratively linking laboratory experiments with spatial simulation models
- …