1 research outputs found

    Quasi-randomness and algorithmic regularity for graphs with general degree distributions

    Get PDF
    We deal with two intimately related subjects: quasi-randomness and regular partitions. The purpose of the concept of quasi-randomness is to express how much a given graph “resembles” a random one. Moreover, a regular partition approximates a given graph by a bounded number of quasi-random graphs. Regarding quasi-randomness, we present a new spectral characterization of low discrepancy, which extends to sparse graphs. Concerning regular partitions, we introduce a concept of regularity that takes into account vertex weights, and show that if G=(V,E)G=(V,E) satisfies a certain boundedness condition, then GG admits a regular partition. In addition, building on the work of Alon and Naor [Proceedings of the 36th ACM Symposium on Theory of Computing (STOC), Chicago, IL, ACM, New York, 2004, pp. 72–80], we provide an algorithm that computes a regular partition of a given (possibly sparse) graph GG in polynomial time. As an application, we present a polynomial time approximation scheme for MAX CUT on (sparse) graphs without “dense spots.
    corecore