2 research outputs found
MELTING OF ACCRETIONARY WEDGE AND BUILDING MATURE CONTINENTAL CRUST: INSIGHTS FROM THE MAGMATIC EVOLUTION OF THE CHINESE ALTAI OROGEN, CENTRAL ASIA
Tectonic-magmatic reworking of accretionary wedges is a key process responsible for differentiation and stabilization of continental crustal in accretionary orogens. This generic problem can be exemplified by magmatic evolution of the Chinese Altai which represents a high-grade core of the world's largest accretionary system, namely the Central Asian Orogenic Belt (CAOB). In the Chinese Altai, voluminous SilurianDevonian granitoids intruding a greywacke-dominated Ordovician flysch sequence. These intrusions are classically interpreted to originate from predominant (70‒90 %) juvenile (depleted mantle-derived) magma. However, their close temporal and spatial relationship with the regional anatexis of flysch rocks, allows us to examine the possibility that they were mainly derived from flysch rocks.Tectonic-magmatic reworking of accretionary wedges is a key process responsible for differentiation and stabilization of continental crustal in accretionary orogens. This generic problem can be exemplified by magmatic evolution of the Chinese Altai which represents a high-grade core of the world's largest accretionary system, namely the Central Asian Orogenic Belt (CAOB). In the Chinese Altai, voluminous SilurianDevonian granitoids intruding a greywacke-dominated Ordovician flysch sequence. These intrusions are classically interpreted to originate from predominant (70‒90 %) juvenile (depleted mantle-derived) magma. However, their close temporal and spatial relationship with the regional anatexis of flysch rocks, allows us to examine the possibility that they were mainly derived from flysch rocks
MELTING OF ACCRETIONARY WEDGE AND BUILDING MATURE CONTINENTAL CRUST: INSIGHTS FROM THE MAGMATIC EVOLUTION OF THE CHINESE ALTAI OROGEN, CENTRAL ASIA
Tectonic-magmatic reworking of accretionary wedges is a key process responsible for differentiation and stabilization of continental crustal in accretionary orogens. This generic problem can be exemplified by magmatic evolution of the Chinese Altai which represents a high-grade core of the world's largest accretionary system, namely the Central Asian Orogenic Belt (CAOB). In the Chinese Altai, voluminous SilurianDevonian granitoids intruding a greywacke-dominated Ordovician flysch sequence. These intrusions are classically interpreted to originate from predominant (70‒90 %) juvenile (depleted mantle-derived) magma. However, their close temporal and spatial relationship with the regional anatexis of flysch rocks, allows us to examine the possibility that they were mainly derived from flysch rocks