499 research outputs found

    Magnetoconductance oscillations in quasiballistic multimode nanowires

    Full text link
    We calculate the conductance of quasi-one-dimensional nanowires with electronic states confined to a surface charge layer, in the presence of a uniform magnetic field. Two-terminal magnetoconductance (MC) between two leads deposited on the nanowire via tunnel barriers is dominated by density-of-states (DOS) singularities, when the leads are well apart. There is also a mesoscopic correction due to a higher-order coherent tunneling between the leads for small lead separation. The corresponding MC structure depends on the interference between electron propagation via different channels connecting the leads, which in the simplest case, for the magnetic field along the wire axis, can be crudely characterized by relative winding numbers of paths enclosing the magnetic flux. In general, the MC oscillations are aperiodic, due to the Zeeman splitting, field misalignment with the wire axis, and a finite extent of electron distribution across the wire cross section, and are affected by spin-orbit coupling. The quantum-interference MC traces contain a wealth of information about the electronic structure of multichannel wires, which would be complimentary to the DOS measurements. We propose a four-terminal configuration to enhance the relative contribution of the higher-order tunneling processes and apply our results to realistic InAs nanowires carrying several quantum channels in the surface charge-accumulation layer.Comment: 11 pages, 8 figure

    Mechanism of CDW-SDW Transition in One Dimension

    Full text link
    The phase transition between charge- and spin-density-wave (CDW, SDW) phases is studied in the one-dimensional extended Hubbard model at half-filling. We discuss whether the transition can be described by the Gaussian and the spin-gap transitions under charge-spin separation, or by a direct CDW-SDW transition. We determine these phase boundaries by level crossings of excitation spectra which are identified according to discrete symmetries of wave functions. We conclude that the Gaussian and the spin-gap transitions take place separately from weak- to intermediate-coupling region. This means that the third phase exists between the CDW and the SDW states. Our results are also consistent with those of the strong-coupling perturbative expansion and of the direct evaluation of order parameters.Comment: 5 pages(REVTeX), 5 figures(EPS), 1 table, also available from http://wwwsoc.nacsis.ac.jp/jps/jpsj/1999/p68a/p68a42/p68a42h/p68a42h.htm

    How universal is the one-particle Green's function of a Luttinger liquid?

    Full text link
    The one-particle Green's function of the Tomonaga-Luttinger model for one-dimensional interacting Fermions is discussed. Far away from the origin of the plane of space-time coordinates the function falls off like a power law. The exponent depends on the direction within the plane. For a certain form of the interaction potential or within an approximated cut-off procedure the different exponents only depend on the strength of the interaction at zero momentum and can be expressed in terms of the Luttinger liquid parameters KρK_{\rho} and KσK_{\sigma} of the model at hand. For a more general interaction and directions which are determined by the charge velocity vρv_{\rho} and spin velocity vσv_{\sigma} the exponents also depend on the smoothness of the interaction at zero momentum and the asymptotic behavior of the Green's function is not given by the Luttinger liquid parameters alone. This shows that the physics of large space-time distances in Luttinger liquids is less universal than is widely believed.Comment: 5 pages with 2 figure

    Hubbard ring: currents induced by change of magnetic flux

    Full text link
    We investigate currents in a quantum ring threaded by a magnetic flux which can be varied in an arbitrary way from an initial value ϕi\phi_i at time tit_i to a final value ϕf\phi_f at time tft_f. Dynamics of electrons in the ring is described by the Hubbard and the extended Hubbard models. We demonstrate that time dependence of the induced current bears information on electron correlations. In the case of the Hubbard model with infinite on--site repulsion we prove that the current for t>tft>t_f is independent of the flux variation before tft_f. Additionally, this current is fully determined by a solution of the initial equilibrium problem and the value of ϕf\phi_f. Apart from mesoscopic rings our results pose important implications for designing of quantum motors built out as the ring--shaped optical lattice

    Phase diagram of an asymmetric spin ladder

    Full text link
    We investigate an asymmetric zig-zag spin ladder with different exchange integrals on both legs using bosonization and renormalization group. When the leg exchange integrals and frustration both are sufficiently small, renormalization group analysis shows that the Heisenberg critical point flows to an intermediate-coupling fixed point with gapless excitations and a vanishing spin velocity. When they are large, a spin gap opens and a dimer liquid is realized. Here, we find a continuous manifold of Hamiltonians with dimer product ground states, interpolating between the Majumdar-Ghosh and sawtooth spin-chain model.Comment: 4 pages, 2 EPS figures, to be published in PR

    Luttinger liquid superlattices

    Full text link
    We calculate the correlation functions and the DC conductivity of Luttinger liquid superlattices, modeled by a repeated pattern of interacting and free Luttinger liquids. In a specific realization, where the interacting subsystem is a Hubbard chain, the system exhibits a rich phase diagram with four different phases: two metals and two compressible insulators. In general, we find that the effective low energy description amalgamates features of both types of liquids in proportion to their spatial extent, suggesting the interesting possibility of `engineered' Luttinger liquids.Comment: RevTeX, 5 pages, 3 figure

    Flux-free conductance modulation in a helical Aharonov-Bohm interferometer

    Full text link
    A novel conductance oscillation in a twisted quantum ring composed of a helical atomic configuration is theoretically predicted. Internal torsion of the ring is found to cause a quantum phase shift in the wavefunction that describes the electron's motion along the ring. The resulting conductance oscillation is free from magnetic flux penetrating inside the ring, which is in complete contrast with the ordinary Aharonov-Bohm effect observed in untwisted quantum rings.Comment: 10 pages, 4 figure

    Angle-resolved photoemission study of untwinned PrBa2_2Cu3_3O7_7: undoped CuO2_2 plane and doped CuO3_3 chain

    Full text link
    We have performed an angle-resolved photoemission study on untwinned PrBa2_2Cu3_3O7_7, which has low resistivity but does not show superconductivity. We have observed a dispersive feature with a band maximum around (π\pi/2,π\pi/2), indicating that this band is derived from the undoped CuO2_2 plane. We have observed another dispersive band exhibiting one-dimensional character, which we attribute to signals from the doped CuO3_3 chain. The overall band dispersion of the one-dimensional band agrees with the prediction of tJt-J model calculation with parameters relevant to cuprates except that the intensity near the Fermi level is considerably suppressed in the experiment.Comment: 6 pages, 10 figure

    Crossover from Luttinger- to Fermi-liquid behavior in strongly anisotropic systems in large dimensions

    Full text link
    We consider the low-energy region of an array of Luttinger liquids coupled by a weak interchain hopping. The leading logarithmic divergences can be re-summed to all orders within a self-consistent perturbative expansion in the hopping, in the large-dimension limit. The anomalous exponent scales to zero below the one-particle crossover temperature. As a consequence, coherent quasiparticles with finite weight appear along the whole Fermi surface. Extending the expansion self-consistently to all orders turns out to be crucial in order to restore the correct Fermi-liquid behavior.Comment: Shortened version to appear in Physical Review Letter

    Properties of a Luttinger Liquid with Boundaries at Finite Temperature and Size

    Full text link
    We use bosonization methods to calculate the exact finite-temperature single-electron Green's function of a spinful Luttinger liquid confined by open boundaries. The corresponding local spectral density is constructed and analyzed in detail. The interplay between boundary, finite-size and thermal effects are shown to dramatically influence the low-energy properties of the system. In particular, the well-known zero-temperature critical behavior in the bulk always crosses over to a boundary dominated regime in the vicinity of the Fermi level. Thermal fluctuations cause an enhanced depletion of spectral weight for small energies E, with the spectral density scaling as E^2 for E much less than the temperature. Consequences for photoemission experiments are discussed.Comment: 18 pages in revtex format including 5 embedded figures (using epsf). The latest complete postscript file is available from http://fy.chalmers.se/~eggert/papers/longlutt.ps or by request from [email protected]. To appear in Phys. Rev. B (Dec. 1997
    corecore