1,261 research outputs found
Towards visualisation of central-cell-effects in scanning-tunnelling-microscope images of subsurface dopant qubits in silicon
Atomic-scale understanding of phosphorous donor wave functions underpins the
design and optimisation of silicon based quantum devices. The accuracy of
large-scale theoretical methods to compute donor wave functions is dependent on
descriptions of central-cell-corrections, which are empirically fitted to match
experimental binding energies, or other quantities associated with the global
properties of the wave function. Direct approaches to understanding such
effects in donor wave functions are of great interest. Here, we apply a
comprehensive atomistic theoretical framework to compute scanning tunnelling
microscopy (STM) images of subsurface donor wave functions with two
central-cell-correction formalisms previously employed in the literature. The
comparison between central-cell models based on real-space image features and
the Fourier transform profiles indicate that the central-cell effects are
visible in the simulated STM images up to ten monolayers below the silicon
surface. Our study motivates a future experimental investigation of the
central-cell effects via STM imaging technique with potential of fine tuning
theoretical models, which could play a vital role in the design of donor-based
quantum systems in scalable quantum computer architectures.Comment: Nanoscale 201
Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments
Major contributors to the organic aerosol include water-soluble macromolecular compounds (e.g. HULIS<sub>WS</sub>: Water Soluble Humic LIke Substances). The nature and sources of HULIS<sub>WS</sub> are still largely unknown. This work is based on a monitoring in six different French cities performed during summer and winter seasons. HULIS<sub>WS</sub> analysis was performed with a selective method of extraction complemented by carbon quantification. UV spectroscopy was also applied for their chemical characterisation. HULIS<sub>WS</sub> carbon represent an important contribution to the organic aerosol mass in summer and winter, as it accounts for 12–22% of Organic Carbon and 34–40% of Water Soluble Organic Carbon. We found strong differences in the optical properties (specific absorbance at 250, 272, 280 nm and E2/E3 ratio) and therefore in the chemical structure between HULIS<sub>WS</sub> from samples of summer- and wintertime. These differences highlight different processes responsible for emissions and formation of HULIS<sub>WS</sub> according to the season, namely biomass burning in winter, and secondary processes in summer. Specific absorbance can also be considered as a rapid and useful indicator of the origin of HULIS<sub>WS</sub> in urban environment
Valley filtering and spatial maps of coupling between silicon donors and quantum dots
Exchange coupling is a key ingredient for spin-based quantum technologies
since it can be used to entangle spin qubits and create logical spin qubits.
However, the influence of the electronic valley degree of freedom in silicon on
exchange interactions is presently the subject of important open questions.
Here we investigate the influence of valleys on exchange in a coupled
donor/quantum dot system, a basic building block of recently proposed schemes
for robust quantum information processing. Using a scanning tunneling
microscope tip to position the quantum dot with sub-nm precision, we find a
near monotonic exchange characteristic where lattice-aperiodic modulations
associated with valley degrees of freedom comprise less than 2~\% of exchange.
From this we conclude that intravalley tunneling processes that preserve the
donor's and valley index are filtered out of the interaction
with the valley quantum dot, and that the and
intervalley processes where the electron valley index changes are weak.
Complemented by tight-binding calculations of exchange versus donor depth, the
demonstrated electrostatic tunability of donor/QD exchange can be used to
compensate the remaining intravalley oscillations to realise uniform
interactions in an array of highly coherent donor spins.Comment: 6 pages, 4 figures, 6 pages Supplemental Materia
Ecological assessment of groundwater ecosystems disturbed by recharge systems using organic matter quality, biofilm characteristics and bacterial diversity
International audienc
Topological properties of punctual Hilbert schemes of almost-complex fourfolds (I)
In this article, we study topological properties of Voisin's punctual Hilbert
schemes of an almost-complex fourfold . In this setting, we compute their
Betti numbers and construct Nakajima operators. We also define tautological
bundles associated with any complex bundle on , which are shown to be
canonical in -theory
On the first Gaussian map for Prym-canonical line bundles
We prove by degeneration to Prym-canonical binary curves that the first
Gaussian map of the Prym canonical line bundle is
surjective for the general point [C,A] of R_g if g >11, while it is injective
if g < 12.Comment: To appear in Geometriae Dedicata. arXiv admin note: text overlap with
arXiv:1105.447
Electric-Field Tuning of Spin-Dependent Exciton-Exciton Interactions in Coupled Quantum Wells
We have shown experimentally that an electric field decreases the energy
separation between the two components of a dense spin-polarized exciton gas in
a coupled double quantum well, from a maximum splitting of meV to
zero, at a field of 35 kV/cm. This decrease, due to the field-induced
deformation of the exciton wavefunction, is explained by an existing
calculation of the change in the spin-dependent exciton-exciton interaction
with the electron-hole separation. However, a new theory that considers the
modification of screening with that separation is needed to account for the
observed dependence on excitation power of the individual energies of the two
exciton components.Comment: 5 pages, 4 eps figures, RevTeX, Physical Review Letters (in press
- …