158 research outputs found

    A Conscious Porcine Model for Sudden Cardiac Death

    Get PDF
    No abstract availabl

    Vasopressin excites interneurons to suppress hippocampal network activity across a broad span of brain maturity at birth

    Get PDF
    During birth in mammals, a pronounced surge of fetal peripheral stress hormones takes place to promote survival in the transition to the extrauterine environment. However, it is not known whether the hormonal signaling involves central pathways with direct protective effects on the perinatal brain. Here, we show that arginine vasopressin specifically activates interneurons to suppress spontaneous network events in the perinatal hippocampus. Experiments done on the altricial rat and precocial guinea pig neonate demonstrated that the effect of vasopressin is not dependent on the level of maturation (depolarizing vs. hyperpolarizing) of postsynaptic GABA(A) receptor actions. Thus, the fetal mammalian brain is equipped with an evolutionarily conserved mechanism well-suited to suppress energetically expensive correlated network events under conditions of reduced oxygen supply at birth.Peer reviewe

    Foramen ovale blood flow and cardiac function after main pulmonary artery occlusion in fetal sheep

    Get PDF
    The foramen ovale (FO) accounts for the majority of fetal left ventricular (LV) output. Increased right ventricular afterload can cause a redistribution of combined cardiac output between the ventricles. To understand the capability of the FO to increase its volume blood flow and thus LV output, we mechanically occluded the main pulmonary artery in seven chronically instrumented near-term sheep fetuses. We hypothesized that FO volume blood flow and LV output would increase during main pulmonary artery occlusion. Fetal cardiac function and haemodynamics were assessed by pulsed and tissue Doppler at baseline, 15 and 60 min after occlusion of the main pulmonary artery and 15 min after occlusion was released. Fetal ascending aorta and central venous pressures and blood gas values were monitored. Main pulmonary artery occlusion initially increased fetal heart rate (P <0.05) from [mean (SD)] 158 (7) to 188 (23) beats min(-1) and LV cardiac output (P <0.0001) from 629 (198) to 776 (283) ml min(-1). Combined cardiac output fell (P <0.0001) from 1524 (341) to 720 (273) ml min(-1). During main pulmonary artery occlusion, FO volume blood flow increased (P <0.001) from 507 (181) to 776 (283) ml min(-1). This increase was related to fetal tachycardia, because LV stroke volume did not change. Fetal ascending aortic blood pressure remained stable. Central venous pressure was higher (P <0.05) during the occlusion than after it was released. During the occlusion, fetal pH decreased and PCO2 increased. Left ventricular systolic dysfunction developed while LV diastolic function was preserved. Right ventricular systolic and diastolic function deteriorated after the occlusion. In conclusion, the FO has a limited capacity to increase its volume blood flow at near-term gestation.Peer reviewe

    Differences in stress tolerance and brood size between a non-indigenous and an indigenous gammarid in the northern Baltic Sea

    Get PDF
    Differences in stress tolerance and reproductive traits may drive the competitive hierarchy between nonindigenous and indigenous species and turn the former ones into successful invaders. In the northern Baltic Sea, the non-indigenous Gammarus tigrinus is a recent invader of littoral ecosystems and now occupies comparable ecological niches as the indigenous G. zaddachi. In laboratory experiments on specimens collected between June and August 2009 around Tva¨rminne in southern Finland (59°500N/23°150E), the tolerances towards heat stress and hypoxia were determined for the two species using lethal time, LT50, as response variable. The brood size of the two species was also studied and some observations were made on maturation of juveniles. Gammarus tigrinus was more resistant to hypoxia and survived at higher temperatures than G. zaddachi. Brood size was also greater in G. tigrinus than in G. zaddachi and G. tigrinus matured at a smaller size and earlier than G. zaddachi. Hence, there are clear competitive advantages for the non-indigenous G. tigrinus compared to the indigenous G. zaddachi, and these may be further strengthened through ongoing environmental changes related to increased eutrophication and a warming climate in the Baltic Sea region
    corecore