5 research outputs found

    Biomimetic Calcium Phosphates Derived from Marine and Land Bioresources

    Get PDF
    This chapter aims to establish the key factors for technological optimization of biogenic calcium phosphate synthesis from marine and land resources. Three natural calcium sources—marble, seashell and bovine bone—were considered as raw materials. The proposed materials are suitable candidates for the synthesis of bone substitutes similar to the inorganic bone component. The synthesis processes were developed based on the investigations of thermal phenomena (TGA-DSC analysis) that can occur during thermal treatments. By this method, we were able to determine the optimum routes and temperatures for the complete dissociation of calcium carbonate as well as risk-free deproteinization of bovine bone. An exhaustive characterization, performed with modern and complementary techniques such as morphology (SEM), composition (EDS, XRF) and structure (FT-IR, XRD), is presented for each precursor. The final chemical composition of ceramic products can be modulated through a careful control of the key parameters involved in the conversion, in order to create long-term performant biphasic apatite biomaterials, with broad medical applicability. Identifying the suitable strategies for this modulation contributes to an appreciable advance in orthopedic tissue engineering

    Age-Related Variation of Pulpal Oxygen Saturation in Healthy Primary and Permanent Teeth in Children: A Clinical Study

    No full text
    (1) Background: Pulse oximetry (PO) is an effective method of dental pulp status monitorization but still lacks practical implementation in dentistry, as well as clear reference values for different tooth types. The study’s aim was to investigate the age-related variation of blood oxygen saturation (SpO2) from the dental pulp during different stages of tooth development in all types of primary and permanent teeth of children. (2) Methods: The pulps of 600 healthy primary and permanent teeth (incisors, canines, premolars, and molars) of patients aged 2–15 years were tested with an adapted PO device, and the results were statistically analyzed; (3) Results: Statistically significant differences (p 2 tended to decrease with age progression in both primary and permanent dentitions. Enamel and dentine thickness and their optical properties and the shape and volume of coronal pulp, which differed among tooth types, seemed to have some influence on the reading as well. The study indicates that factors such as the root development and the tooth type must be taken into account when establishing reference SpO2 values for the dental pulp

    Naturally-Derived Biphasic Calcium Phosphates through Increased Phosphorus-Based Reagent Amounts for Biomedical Applications

    No full text
    Calcium carbonate from marble and seashells is an eco-friendly, sustainable, and largely available bioresource for producing natural bone-like calcium phosphates (CaPs). Based on three main objectives, this research targeted the: (i) adaptation of an indirect synthesis route by modulating the amount of phosphorus used in the chemical reaction, (ii) comprehensive structural, morphological, and surface characterization, and (iii) biocompatibility assessment of the synthesized powdered samples. The morphological characterization was performed on digitally processed scanning electron microscopy (SEM) images. The complementary 3D image augmentation of SEM results also allowed the quantification of roughness parameters. The results revealed that both morphology and roughness were modulated through the induced variation of the synthesis parameters. Structural investigation of the samples was performed by Fourier transform infrared spectroscopy and X-ray diffraction. Depending on the phosphorus amount from the chemical reaction, the structural studies revealed the formation of biphasic CaPs based on hydroxyapatite/brushite or brushite/monetite. The in vitro assessment of the powdered samples demonstrated their capacity to support MC3T3-E1 pre-osteoblast viability and proliferation at comparable levels to the negative cytotoxicity control and the reference material (commercial hydroxyapatite). Therefore, these samples hold great promise for biomedical applications

    Influence of Ceramic Particles Size and Ratio on Surface—Volume Features of the Naturally Derived HA-Reinforced Filaments for Biomedical Applications

    No full text
    The intersection of the bone tissue reconstruction and additive manufacturing fields promoted the advancement to a prerequisite and new feedstock resource for high-performance bone-like-scaffolds manufacturing. In this paper, the proposed strategy was directed toward the use of bovine-bone-derived hydroxyapatite (HA) for surface properties enhancement and mechanical features reinforcement of the poly(lactic acid) matrix for composite filaments extrusion. The involvement of completely naturally derived materials in the technological process was based on factors such as sustainability, low cost, and a facile and green synthesis route. After the HA isolation and extraction from bovine bones by thermal processing, milling, and sorting, two dependent parameters—the HA particles size (<40 μm, <100 μm, and >125 μm) and ratio (0–50% with increments of 10%)—were simultaneously modulated for the first time during the incorporation into the polymeric matrix. The resulting melt mixtures were divided for cast pellets and extruded filaments development. Based on the obtained samples, the study was further designed to examine several key features by complementary surface–volume characterization techniques. Hence, the scanning electron microscopy and micro-CT results for all specimens revealed a uniform and homogenous dispersion of HA particles and an adequate adhesion at the ceramic/polymer interface, without outline pores, sustained by the shape and surface features of the synthesized ceramic particles. Moreover, an enhanced wettability (contact angle in the ~70−21° range) and gradual mechanical takeover were indicated once the HA ratio increased, independent of the particles size, which confirmed the benefits and feasibility of evenly blending the natural ceramic/polymeric components. The results correlation led to the selection of optimal technological parameters for the synthesis of adequate composite filaments destined for future additive manufacturing and biomedical applications

    Assessment of Pulpal Status in Primary Teeth Following Direct Pulp Capping in an Experimental Canine Model

    No full text
    (1) Background: This study aimed to assess the pulpal response of primary teeth by pulse-oximetry (PO) in a canine model, following direct pulp capping (DPC). (2) Methods: Forty-eight primary teeth from eight canine subjects were divided into three treatment groups, based on the DPC material—calcium hydroxide (CH), MTA, BiodentineTM)—and three corresponding control groups. Data from PO pulp testing were correlated with laser Doppler flowmetry (LDF) testing, computer tomographic (CT) densitometry and histological analysis; the experiment lasted 14 days. (3) Results: SpO₂ recordings revealed statistically significant differences (p = 0.002, <0.05) between the treatment and control groups, and no significant differences (p = 0.257, >0.05) were observed between treatment groups. LDF recordings showed significant differences (p = 0.002, <0.05) between the treatment and control groups and identified significant differences between materials (p = 0.001, <0.05). CT densitometry indicated vital pulps in all teeth, with pulpal inflammation detected in 6/8 CH-capped teeth and 2/8 MTA-capped teeth. Histologic evaluation confirmed vital pulp in all specimens, with different degrees of inflammation. (4) Conclusions: Within its limitations, the present study confirms the diagnostic value of PO evaluation of pulpal status in primary teeth with histologic means after pulp-capping procedures in a canine model. However, various degrees of pulpal inflammation elicited by different pulp-capping materials seem not to correlate with the obtained PO values
    corecore