594 research outputs found

    Toxicity of Three Insecticides to Lysiphlebus fabarum, a Parasitoid of the Black Bean Aphid, Aphis fabae

    Get PDF
    The toxicity of three insecticides to Lysiphlebus fabarum (Marshall) (Hymenoptera: Braconidae: Aphidiinae), a parasitoid of Aphis fabae Scopoli (Hemiptera: Aphididae), was investigated using IOBC/wprs protocols. Abamectin 1.8 EC, imidacloprid 350 SC, and pymetrozine 25 WP were tested under laboratory conditions at recommended field rates. Immature stages of the parasitoid were exposed to materials by briefly dipping mummified aphids into insecticide solutions/suspensions or water (controls). Abamectin, imidacloprid, and pymetrozine caused 44.8, 58.5, and 14.5% mortality of mummies, respectively. Insecticides were also applied to broad bean foliage until run-off using a hand sprayer and the contact toxicity of residues was investigated after 1, 5, 16 and 30 day periods of outdoor weathering by caging adult wasps on treated plants for 24 h. One day-old residues of abamectin, imidacloprid, and pymetrozine produced 52.5, 90.0 and 57.0% mortality, respectively, and 5 day-old residues produced 28.1, 77.0 and 18.6% mortality. Sixteen day-old residues produced 8.8, 22.4 and 13.6% mortality, whereas 30 day-old residues produced 0.0, 3.2 and 1.1% mortality, respectively. On the basis of these results, abamectin and pymetrozine were classified as short-lived compounds (Class A) and imidacloprid as a slightly persistent compound (Class B)

    Differential effects of neurodegeneration biomarkers on subclinical cognitive decline

    Get PDF
    Introduction: Neurodegeneration appears to be the biological mechanism most proximate to cognitive decline in Alzheimer's disease. We test whether t-tau and alternative biomarkers of neurodegeneration—neurogranin and neurofilament light protein (NFL)—add value in predicting subclinical cognitive decline. Methods: One hundred fifty cognitively unimpaired participants received a lumbar puncture for cerebrospinal fluid and at least two neuropsychological examinations (mean age at first visit = 59.3 ± 6.3 years; 67% female). Linear mixed effects models were used with cognitive composite scores as outcomes. Neurodegeneration interactions terms were the primary predictors of interest: age × NFL or age × neurogranin or age × t-tau. Models were compared using likelihood ratio tests. Results: Age × NFL accounted for a significant amount of variation in longitudinal change on preclinical Alzheimer's cognitive composite scores, memory composite scores, and learning scores, whereas age × neurogranin and age × t-tau did not. Discussion: These data suggest that NFL may be more sensitive to subclinical cognitive decline compared to other proposed biomarkers for neurodegeneration

    On Dorsal Prothoracic Appendages in Treehoppers (Hemiptera: Membracidae) and the Nature of Morphological Evidence

    Get PDF
    A spectacular hypothesis was published recently, which suggested that the “helmet” (a dorsal thoracic sclerite that obscures most of the body) of treehoppers (Insecta: Hemiptera: Membracidae) is connected to the 1st thoracic segment (T1; prothorax) via a jointed articulation and therefore was a true appendage. Furthermore, the “helmet” was interpreted to share multiple characteristics with wings, which in extant pterygote insects are present only on the 2nd (T2) and 3rd (T3) thoracic segments. In this context, the “helmet” could be considered an evolutionary novelty. Although multiple lines of morphological evidence putatively supported the “helmet”-wing homology, the relationship of the “helmet” to other thoracic sclerites and muscles remained unclear. Our observations of exemplar thoraces of 10 hemipteran families reveal multiple misinterpretations relevant to the “helmet”-wing homology hypothesis as originally conceived: 1) the “helmet” actually represents T1 (excluding the fore legs); 2) the “T1 tergum” is actually the anterior dorsal area of T2; 3) the putative articulation between the “helmet” and T1 is actually the articulation between T1 and T2. We conclude that there is no dorsal, articulated appendage on the membracid T1. Although the posterior, flattened, cuticular evagination (PFE) of the membracid T1 does share structural and genetic attributes with wings, the PFE is actually widely distributed across Hemiptera. Hence, the presence of this structure in Membracidae is not an evolutionary novelty for this clade. We discuss this new interpretation of the membracid T1 and the challenges of interpreting and representing morphological data more broadly. We acknowledge that the lack of data standards for morphology is a contributing factor to misinterpreted results and offer an example for how one can reduce ambiguity in morphology by referencing anatomical concepts in published ontologies

    Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant

    Get PDF
    © Gramazio et al.; licensee BioMed Central. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    Substrate protein folds while it is bound to the ATP-independent chaperone Spy

    Get PDF
    Chaperones assist the folding of many proteins in the cell. While the most well studied chaperones use cycles of ATP binding and hydrolysis to assist protein folding, a number of chaperones have been identified that promote protein folding in the absence of highenergy cofactors. Precisely how ATP-independent chaperones accomplish this feat is unclear. Here we have characterized the kinetic mechanism of substrate folding by the small, ATP-independent chaperone, Spy. Spy rapidly associates with its substrate, Immunity protein 7 (Im7), eliminating its potential for aggregation. Remarkably, Spy then allows Im7 to fully fold into its native state while remaining bound to the surface of the chaperone. These results establish a potentially widespread mechanism whereby ATP-independent chaperones can assist in protein refolding. They also provide compelling evidence that substrate proteins can fold while continuously bound to a chaperone

    Correlation of Circulating Omentin-1 with Bone Mineral Density in Multiple Sclerosis: The Crosstalk between Bone and Adipose Tissue

    Get PDF
    BACKGROUND: Patients with multiple sclerosis (MS) are at increased risk of osteoporosis and fractures. Adipose tissue-derived adipokines may play important roles in the osteoimmunology of MS. In order to determine whether omentin-1 and vaspin may be related to bone health in MS patients, we compared circulating levels of these recently identified adipokines, between MS patients and healthy controls. METHODS: A total of 35 ambulatory MS patients with relapsing-remitting courses were compared with 38 age- and sex-matched healthy controls. Bone mineral density (BMD) was determined for the lumbar spine (L2-L4) and the proximal femur using dual-energy x-ray absorptiometry. Circulating omentin-1, vaspin, osteocalcin, osteopontin, osteoprotegerin, the receptor activator of nuclear factor-κB ligand, matrix metalloproteinase 9, C-reactive protein and 25-hydroxy vitamin D levels were evaluated by highly specific enzyme-linked immunosorbent assay methods. RESULTS: There was no significant difference between the two groups regarding bone-related cytokines, adipocytokines, and the BMD measurements of patients with MS and the healthy controls. However, in multiple regression analysis, serum omentin-1 levels were positively correlated with BMD at the femoral neck (β = 0.49, p = 0.016), total hip (β = 0.42, p = 0.035), osteopontin (β = 0.42, p = 0.030) and osteocalcin (β = 0.53, p = 0.004) in MS patients. No correlations were found between vaspin, biochemical, and BMD measures in both groups. CONCLUSIONS: Elevated omentin-1 serum levels are correlated with BMD at the femoral neck and the serum levels of osteocalcin and osteopontin in MS patients. Therefore, there is crosstalk between adipose tissue and bone in MS

    rTMS of the Left Dorsolateral Prefrontal Cortex Modulates Dopamine Release in the Ipsilateral Anterior Cingulate Cortex and Orbitofrontal Cortex

    Get PDF
    Background: Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson’s disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of noninvasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC) (areas 9/46) stimulation on prefrontal dopamine (DA). Methodology/Principal Findings: Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [ 11 C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [ 11 C]FLB 457 binding potential (BP) in the ipsilateral subgenual anterior cingulate cortex (ACC) (BA 25/12), pregenual ACC (BA 32) and medial orbitofrontal cortex (BA 11). There were no significant changes in [ 11 C]FLB 457 BP following right DLPFC rTMS. Conclusions/Significance: To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [ 11 C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help t

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
    corecore