513 research outputs found
Spectral modeling of type II supernovae. I. Dilution factors
We present substantial extensions to the Monte Carlo radiative transfer code
TARDIS to perform spectral synthesis for type II supernovae. By incorporating a
non-LTE ionization and excitation treatment for hydrogen, a full account of
free-free and bound-free processes, a self-consistent determination of the
thermal state and by improving the handling of relativistic effects, the
improved code version includes the necessary physics to perform spectral
synthesis for type II supernovae to high precision as required for the reliable
inference of supernova properties. We demonstrate the capabilities of the
extended version of TARDIS by calculating synthetic spectra for the
prototypical type II supernova SN1999em and by deriving a new and independent
set of dilution factors for the expanding photosphere method. We have
investigated in detail the dependence of the dilution factors on photospheric
properties and, for the first time, on changes in metallicity. We also compare
our results with two previously published sets of dilution factors by Eastman
et al. (1996) and by Dessart & Hillier (2005), and discuss the potential
sources of the discrepancies between studies.Comment: 16 pages, 12 figures, 2 tables, accepted for publication in A&
Responses of quark condensates to the chemical potential
The responses of quark condensates to the chemical potential, as a function
of temperature T and chemical potential \mu, are calculated within the
Nambu--Jona-Lasinio (NJL) model. We compare our results with those from the
recent lattice QCD simulations [QCD-TARO Collaboration, Nucl. Phys. B (Proc.
Suppl.) 106, 462 (2002)]. The NJL model and lattice calculations show
qualitatively similar behavior, and they will be complimentary ways to study
hadrons at finite density. The behavior above T_c requires more elaborated
analyses.Comment: 3 pages, 2 figs, based on a contribution to the Prof. Osamu Miyamura
memorial symposium, Hiroshima University, Nov. 16-17, 2001; slightly revised,
accepted for publication in Physical Review
Thermalization of coupled atom-light states in the presence of optical collisions
The interaction of a two-level atomic ensemble with a quantized single mode
electromagnetic field in the presence of optical collisions (OC) is
investigated both theoretically and experimentally. The main accent is made on
achieving thermal equilibrium for coupled atom-light states (in particular
dressed states). We propose a model of atomic dressed state thermalization that
accounts for the evolution of the pseudo-spin Bloch vector components and
characterize the essential role of the spontaneous emission rate in the
thermalization process. Our model shows that the time of thermalization of the
coupled atom-light states strictly depends on the ratio of the detuning and the
resonant Rabi frequency. The predicted time of thermalization is in the
nanosecond domain and about ten times shorter than the natural lifetime at full
optical power in our experiment. Experimentally we are investigating the
interaction of the optical field with rubidium atoms in an ultra-high pressure
buffer gas cell under the condition of large atom-field detuning comparable to
the thermal energy in frequency units. In particular, an observed detuning
dependence of the saturated lineshape is interpreted as evidence for thermal
equilibrium of coupled atom-light states. A significant modification of
sideband intensity weights is predicted and obtained in this case as well.Comment: 14 pages, 12 figures; the content was edite
RPA-Approach to the Excitations of the Nucleon, Part II: Phenomenology
The tensor-RPA approach developed previously in part I is applied to the
Nambu-Jona-Lasinio (NJL) model. As a first step we investigate the structure of
Dirac-Hartree-Fock solutions for a rotationally and isospin invariant
ground-state density. Whereas vacuum properties can be reproduced, no solitonic
configuration for a system with unit baryon number is found. We then solve the
tensor-RPA equation employing simple models of the nucleon ground state. In
general the ph interaction effects a decrease of the excited states to lower
energies. Due to an enhanced level density at low energies the obtained spectra
cannot be matched with the experimental data when a standard MIT-bag
configuration is used. However, when the size of the nucleon quark core is
reduced to approximately 0.3 fm a fair description of the baryon spectrum in
the positive-parity channel is achieved. For this purpose the residual
interaction turns out to be crucial and leads to a significant improvement
compared with the mean-field spectra.Comment: 33 pages, Latex, 9 Postscpript figures, section on the excited states
has been completely rewritten after error was detected, results are now much
more encouragin
Consistency in Regularizations of the Gauged NJL Model at One Loop Level
In this work we revisit questions recently raised in the literature
associated to relevant but divergent amplitudes in the gauged NJL model. The
questions raised involve ambiguities and symmetry violations which concern the
model's predictive power at one loop level. Our study shows by means of an
alternative prescription to handle divergent amplitudes, that it is possible to
obtain unambiguous and symmetry preserving amplitudes. The procedure adopted
makes use solely of {\it general} properties of an eventual regulator, thus
avoiding an explicit form. We find, after a thorough analysis of the problem
that there are well established conditions to be fulfiled by any consistent
regularization prescription in order to avoid the problems of concern at one
loop level.Comment: 22 pages, no figures, LaTeX, to appear in Phys.Rev.
Topological susceptibility at zero and finite temperature in the Nambu-Jona-Lasinio model
We consider the three flavor Nambu-Jona-Lasinio model with the 't Hooft
interaction incorporating the U(1)_A anomaly. In order to set the coupling
strength of the 't Hooft term, we employ the topological susceptibility
instead of the eta' meson mass. The value for is taken from lattice
simulations. We also calculate at finite temperature within the model.
Comparing it with the lattice data, we extract information about the behavior
of the U(1)_A anomaly at finite temperature. We conclude that within the
present framework, the effective restoration of the U(1)_A symmetry does not
necessarily take place even at high temperature where the chiral symmetry is
restored.Comment: 9 pages, 14 figures, to be published in Phys.Rev.
The phase diagram and bulk thermodynamical quantities in the NJL model at finite temperature and density
We reexamine the recent instanton motivated studies of Alford, Rajagopal and
Wilczek, and Berges and Rajagopal in the framework of the standard SU(2)
Nambu-Jona-Lasinio model. The chiral phase diagram is calculated in the
temperature--density plane, and the pressure is evaluated as the function of
the density. Obtaining simple approximate relations describing the -
and - phase transition lines we find that the results of the instanton
based model and that of the NJL model are identical. The diquark transition
line is also given.Comment: 11 pages LaTeX plus 7 PS figures. One figure has been added and there
are some changes in the text describing thi
Quark and Nucleon Self-Energy in Dense Matter
In a recent work we introduced a nonlocal version of the
Nambu--Jona-Lasinio(NJL) model that was designed to generate a quark
self-energy in Euclidean space that was similar to that obtained in lattice
simulations of QCD. In the present work we carry out related calculations in
Minkowski space, so that we can study the effects of the significant vector and
axial-vector interactions that appear in extended NJL models and which play an
important role in the study of the , and mesons. We study
the modification of the quark self-energy in the presence of matter and find
that our model reproduces the behavior of the quark condensate predicted by the
model-independent relation , where is the
pion-nucleon sigma term and is the density of nuclear matter. (Since
we do not include a model of confinement, our study is restricted to the
analysis of quark matter. We provide some discussion of the modification of the
above formula for quark matter.) The inclusion of a quark current mass leads to
a second-order phase transition for the restoration of chiral symmetry. That
restoration is about 80% at twice nuclear matter density for the model
considered in this work. We also find that the part of the quark self-energy
that is explicitly dependent upon density has a strong negative Lorentz-scalar
term and a strong positive Lorentz-vector term, which is analogous to the
self-energy found for the nucleon in nuclear matter when one makes use of the
Dirac equation for the nucleon. In this work we calculate the nucleon self
-energy in nuclear matter using our model of the quark self-energy and obtain
satisfactory results.Comment: 19 pages, 8 figures, 2 tables, revte
- …