10 research outputs found

    Development of a human cardiac organoid injury model reveals innate regenerative potential

    Get PDF
    The adult human heart possesses a limited regenerative potential following an ischemic event, and undergoes a number of pathological changes in response to injury. Although cardiac regeneration has been documented in zebrafish and neonatal mouse hearts, it is currently unknown whether the immature human heart is capable of undergoing complete regeneration. Combined progress in pluripotent stem cell differentiation and tissue engineering has facilitated the development of human cardiac organoids (hCOs), which resemble fetal heart tissue and can be used to address this important knowledge gap. This study aimed to characterize the regenerative capacity of immature human heart tissue in response to injury. Following cryoinjury with a dry ice probe, hCOs exhibited an endogenous regenerative response with full functional recovery 2 weeks after acute injury. Cardiac functional recovery occurred in the absence of pathological fibrosis or cardiomyocyte hypertrophy. Consistent with regenerative organisms and neonatal human hearts, there was a high basal level of cardiomyocyte proliferation, which may be responsible for the regenerative capacity of the hCOs. This study suggests that immature human heart tissue has an intrinsic capacity to regenerate

    Alpha kinase 3 signaling at the M-band maintains sarcomere integrity and proteostasis in striated muscle

    Get PDF
    Muscle contraction is driven by the molecular machinery of the sarcomere. As phosphorylation is a critical regulator of muscle function, the identification of regulatory kinases is important for understanding sarcomere biology. Pathogenic variants in alpha kinase 3 (ALPK3) cause cardiomyopathy and musculoskeletal disease, but little is known about this atypical kinase. Here we show that ALPK3 is an essential component of the M-band of the sarcomere and define the ALPK3-dependent phosphoproteome. ALPK3 deficiency impaired contractility both in human cardiac organoids and in the hearts of mice harboring a pathogenic truncating Alpk3 variant. ALPK3-dependent phosphopeptides were enriched for sarcomeric components of the M-band and the ubiquitin-binding protein sequestosome-1 (SQSTM1) (also known as p62). Analysis of the ALPK3 interactome confirmed binding to M-band proteins including SQSTM1. In human pluripotent stem cell-derived cardiomyocytes modeling cardiomyopathic ALPK3 mutations, sarcomeric organization and M-band localization of SQSTM1 were abnormal suggesting that this mechanism may underly disease pathogenesis

    Disease modeling and functional screening using engineered heart tissue

    No full text
    Recent advances in cardiac tissue engineering and pluripotent stem cell technologies are providing unprecedented access to human heart tissue with in vivo-like structural and functional properties. Engineered heart tissue (EHT) is emerging as a powerful technology platform for regenerative medicine, as well as for in vitro modeling of human physiological and pathophysiological processes. Here, we discuss the potential of EHT for studying cellular interactions within the heart and for modeling genetic and environmental causes of cardiovascular disease. In addition, we highlight the utility of EHT for drug screening and the identification of novel therapeutic modalities

    Centrosome reduction promotes terminal differentiation of human cardiomyocytes

    No full text
    Centrosome reduction and redistribution of pericentriolar material (PCM) coincides with cardiomyocyte transitions to a post-mitotic and matured state. However, it is unclear whether centrosome changes are a cause or consequence of terminal differentiation. We validated that centrosomes were intact and functional in proliferative human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), consistent with their immature phenotype. We generated acentrosomal hPSC-CMs, through pharmacological inhibition of centriole duplication, and showed that centrosome loss was sufficient to promote post-mitotic transitions and aspects of cardiomyocyte maturation. As Hippo kinases are activated during post-natal cardiac maturation, we pharmacologically activated the Hippo pathway using C19, which was sufficient to trigger centrosome disassembly and relocalization of PCM components to perinuclear membranes. This was due to specific activation of Hippo kinases, as direct inhibition of YAP-TEAD interactions with verteporfin had no effect on centrosome organization. This suggests that Hippo kinase-centrosome remodeling may play a direct role in cardiac maturation.In this article, Ng, Hudson, and colleagues demonstrated that the removal of centrosomes, through blocking centriole duplication, was sufficient to trigger post-mitotic transitions and differentiation of immature human cardiomyocytes. They also revealed that Hippo kinase activation triggered redistribution of centrosomal proteins to acentrosomal sites. This suggests that the regulated disassembly of centrosomes by Hippo kinases may promote cardiomyocyte maturation

    β-catenin drives distinct transcriptional networks in proliferative and non-proliferative cardiomyocytes

    No full text
    The inability of the adult mammalian heart to regenerate represents a fundamental barrier in heart failure management. By contrast, the neonatal heart retains a transient regenerative capacity, but the underlying mechanisms for the developmental loss of cardiac regenerative capacity in mammals are not fully understood. Wnt/β-catenin signalling has been proposed as a key cardioregenerative pathway driving cardiomyocyte proliferation. Here, we show that Wnt/β-catenin signalling potentiates neonatal mouse cardiomyocyte proliferation\ua0in vivo\ua0and immature human pluripotent stem cell-derived cardiomyocyte (hPSC-CM) proliferation\ua0in vitro. By contrast, Wnt/β-catenin signalling in adult mice is cardioprotective but fails to induce cardiomyocyte proliferation. Transcriptional profiling and chromatin immunoprecipitation sequencing of neonatal mouse and hPSC-CMs revealed a core Wnt/β-catenin-dependent transcriptional network governing cardiomyocyte proliferation. By contrast, β-catenin failed to re-engage this neonatal proliferative gene network in the adult heart despite partial transcriptional re-activation of a neonatal glycolytic gene programme. These findings suggest that β-catenin might be repurposed from regenerative to protective functions in the adult heart in a developmental process dependent on the metabolic status of cardiomyocytes

    Enhanced cardiac repair by telomerase reverse transcriptase over-expression in human cardiac mesenchymal stromal cells

    No full text
    We have previously reported a subpopulation of mesenchymal stromal cells (MSCs) within the platelet-derived growth factor receptor-alpha (PDGFRα)/CD90 co-expressing cardiac interstitial and adventitial cell fraction. Here we further characterise PDGFRα/CD90-expressing cardiac MSCs (PDGFRα + cMSCs) and use human telomerase reverse transcriptase (hTERT) over-expression to increase cMSCs ability to repair the heart after induced myocardial infarction. hTERT over-expression in PDGFRα + cardiac MSCs (hTERT + PDGFRα + cMSCs) modulates cell differentiation, proliferation, survival and angiogenesis related genes. In vivo, transplantation of hTERT + PDGFRα + cMSCs in athymic rats significantly increased left ventricular function, reduced scar size, increased angiogenesis and proliferation of both cardiomyocyte and non-myocyte cell fractions four weeks after myocardial infarction. In contrast, transplantation of mutant hTERT + PDGFRα + cMSCs (which generate catalytically-inactive telomerase) failed to replicate this cardiac functional improvement, indicating a telomerase-dependent mechanism. There was no hTERT + PDGFRα + cMSCs engraftment 14 days after transplantation indicating functional improvement occurred by paracrine mechanisms. Mass spectrometry on hTERT + PDGFRα + cMSCs conditioned media showed increased proteins associated with matrix modulation, angiogenesis, cell proliferation/survival/adhesion and innate immunity function. Our study shows that hTERT can activate pro-regenerative signalling within PDGFRα + cMSCs and enhance cardiac repair after myocardial infarction. An increased understanding of hTERT's role in mesenchymal stromal cells from various organs will favourably impact clinical regenerative and anti-cancer therapies

    Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway

    No full text
    We have previously developed a high-throughput bioengineered human cardiac organoid (hCO) platform, which provides functional contractile tissue with biological properties similar to native heart tissue, including mature, cell-cycle-arrested cardiomyocytes. In this study, we perform functional screening of 105 small molecules with pro-regenerative potential. Our findings reveal surprising discordance between our hCO system and traditional 2D assays. In addition, functional analyses uncovered detrimental effects of many hit compounds. Two pro-proliferative small molecules without detrimental impacts on cardiac function were identified. High-throughput proteomics in hCO revealed synergistic activation of the mevalonate pathway and a cell-cycle network by the pro-proliferative compounds. Cell-cycle reentry in hCO and in vivo required the mevalonate pathway as inhibition of the mevalonate pathway with a statin attenuated pro-proliferative effects. This study highlights the utility of human cardiac organoids for pro-regenerative drug development, including identification of underlying biological mechanisms and minimization of adverse side effects. Hudson, Porrello, et al. perform drug screening in human mini-hearts to identify compounds that promote human heart muscle cell proliferation. Drug screening also eliminated potential side effects on heart rhythm and function. Induction of heart muscle cell proliferation required activation of the cholesterol biosynthesis pathway

    Discovery of drugs to treat cytokine storm-induced cardiac dysfunction using human cardiac organoids

    No full text
    SUMMARY SARS-CoV2 infection leads to cardiac injury and dysfunction in 20-30% of hospitalized patients 1 and higher rates of mortality in patients with pre-existing cardiovascular disease 2,3 . Inflammatory factors released as part of the ‘cytokine storm’ are thought to play a critical role in cardiac dysfunction in severe COVID-19 patients 4 . Here we use human cardiac organoids combined with high sensitivity phosphoproteomics and single nuclei RNA sequencing to identify inflammatory targets inducing cardiac dysfunction. This state-of-the-art pipeline allowed rapid deconvolution of mechanisms and identification of putative therapeutics. We identify a novel interferon-γ driven BRD4 (bromodomain protein 4)-fibrosis/iNOS axis as a key intracellular mediator of inflammation-induced cardiac dysfunction. This axis is therapeutically targetable using BRD4 inhibitors, which promoted full recovery of function in human cardiac organoids and prevented severe inflammation and death in a cytokine-storm mouse model. The BRD inhibitor INCB054329 was the most efficacious, and is a prime candidate for drug repurposing to attenuate cardiac dysfunction and improve COVID-19 mortality in humans

    Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest

    No full text
    The mammalian heart undergoes maturation during postnatal life to meet the increased functional requirements of an adult. However, the key drivers of this process remain poorly defined. We are currently unable to recapitulate postnatal maturation in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), limiting their potential as a model system to discover regenerative therapeutics. Here, we provide a summary of our studies, where we developed a 96-well device for functional screening in human pluripotent stem cell-derived cardiac organoids (hCOs). Through interrogation of > 10,000 organoids, we systematically optimize parameters, including extracellular matrix (ECM), metabolic substrate, and growth factor conditions, that enhance cardiac tissue viability, function, and maturation. Under optimized maturation conditions, functional and molecular characterization revealed that a switch to fatty acid metabolism was a central driver of cardiac maturation. Under these conditions, hPSC-CMs were refractory to mitogenic stimuli, and we found that key proliferation pathways including beta-catenin and Yes-associated protein 1 (YAP1) were repressed. This proliferative barrier imposed by fatty acid metabolism in hCOs could be rescued by simultaneous activation of both beta-catenin and YAP1 using genetic approaches or a small molecule activating both pathways. These studies highlight that human organoids coupled with higher-throughput screening platforms have the potential to rapidly expand our knowledge of human biology and potentially unlock therapeutic strategies

    BET Inhibition Blocks Inflammation-Induced Cardiac Dysfunction and SARS-CoV-2 Infection

    No full text
    Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined, but could be direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory ‘cytokine-storm’, a cocktail of interferon gamma, interleukin 1β and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids and hearts of SARS-CoV-2 infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCO and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the FDA breakthrough designated drug apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage
    corecore