1,451 research outputs found
Homodyne detection for measuring internal quantum correlations of optical pulses
A new method is described for determining the quantum correlations at
different times in optical pulses by using balanced homodyne detection. The
signal pulse and sequences of ultrashort test pulses are superimposed, where
for chosen distances between the test pulses their relative phases and
intensities are varied from measurement to measurement. The correlation
statistics of the signal pulse is obtained from the time-integrated difference
photocurrents measured.Comment: 7 pages, A4.sty include
Detection of Supernova Neutrinos by Neutrino-Proton Elastic Scattering
We propose that neutrino-proton elastic scattering, ,
can be used for the detection of supernova neutrinos in scintillator detectors.
Though the proton recoil kinetic energy spectrum is soft, with , and the scintillation light output from slow, heavily ionizing
protons is quenched, the yield above a realistic threshold is nearly as large
as that from . In addition, the measured proton
spectrum is related to the incident neutrino spectrum, which solves a
long-standing problem of how to separately measure the total energy and
temperature of , , , and .
The ability to detect this signal would give detectors like KamLAND and
Borexino a crucial and unique role in the quest to detect supernova neutrinos.Comment: 10 pages, 9 figures, revtex
The dependence of metal-silicate partitioning of moderately volatile elements on oxygen fugacity and Si contents of Fe metal: Implications for their valence states in silicate liquids
The volatile siderophile elements are important tracers of the delivery of volatile elements to the Earth. Their concentrations in the bulk silicate Earth are a function of the relative timing of their accretion and their sequestration into the core: a comprehensive understanding of their metal-silicate partitioning behaviour is therefore required in order to infer the volatile element accretion history. We present new partitioning data between liquid metal and liquid silicate at 11 GPa for a suite of volatile siderophile elements: Ag, As, Au, Cu, Ge, P, Pb, Sb, Sn. We focus particularly on determining their valence states and the effects of Si on partitioning, which are required in order to extrapolate from experimental conditions to core-formation conditions. It was found that all elements have weak to strong positive interaction parameters with Si. At low fO2, redox equilibria dictate that the siderophile elements should become more siderophile. However, at low fO2, Si also partitions more strongly into the metal. Given the repulsive nature of the interaction between Si and the elements of interest, the increased Si concentration at low fO2 will counteract the expected increase in the partition coefficient, making these elements less siderophile than expected at very reducing conditions. This causes the linear relationship between fO2 and log(D) to become non-linear at low fO2, which we account for by fitting an interaction parameter between Si and the elements of interest. This has implications for the interpretation of experimental results, because the valence cannot be determined from the slope of log(D) vs. logfO2 if low fO2, high Si metal compositions are employed without applying an activity correction. This also has implications for the extrapolation of experimental partitioning data to core-formation conditions: reducing conditions in the early stages of core formation do not necessarily result in complete or even strong depletion of siderophile elements when Si is present as a light element in the core-forming metal phase
Quantum mechanical counterpart of nonlinear optics
Raman-type laser excitation of a trapped atom allows one to realize the
quantum mechanical counterpart of phenomena of nonlinear optics, such as
Kerr-type nonlinearities, parametric amplification, and multi-mode mixing.
Additionally, huge nonlinearities emerge from the interference of the atomic
wave function with the laser waves. They lead to a partitioning of the phase
space accompanied by a significantly different action of the time evolution in
neighboring phase-space zones. For example, a nonlinearly modified coherent
"displacement" of the motional quantum state may induce strong amplitude
squeezing and quantum interferences.Comment: 6 pages, 4 figures, to be published in Phys. Rev. A 55 (June
Motional effects of single trapped atomic/ionic qubit
We investigate theoretical decoherence effects of the motional degrees of
freedom of a single trapped atomic/ionic electronically coded qubit. For single
bit rotations from a resonant running wave laser field excitation, we found the
achievable fidelity to be determined by a single parameter characterized by the
motional states. Our quantitative results provide a useful realistic view for
current experimental efforts in quantum information and computing.Comment: 3 fig
The angular distribution of the reaction
The reaction is very important for low-energy
( MeV) antineutrino experiments. In this paper we calculate
the positron angular distribution, which at low energies is slightly backward.
We show that weak magnetism and recoil corrections have a large effect on the
angular distribution, making it isotropic at about 15 MeV and slightly forward
at higher energies. We also show that the behavior of the cross section and the
angular distribution can be well-understood analytically for MeV by calculating to , where is the nucleon mass. The
correct angular distribution is useful for separating events from other reactions and detector backgrounds, as well as for
possible localization of the source (e.g., a supernova) direction. We comment
on how similar corrections appear for the lepton angular distributions in the
deuteron breakup reactions and . Finally, in the reaction , the
angular distribution of the outgoing neutrons is strongly forward-peaked,
leading to a measurable separation in positron and neutron detection points,
also potentially useful for rejecting backgrounds or locating the source
direction.Comment: 10 pages, including 5 figure
Shell-model calculations of neutrino scattering from 12C
Neutrino reaction cross-sections, , ,
-capture and photoabsorption rates on C are computed within a
large-basis shell-model framework, which included excitations up to
. When ground-state correlations are included with an open
-shell the predictions of the calculations are in reasonable agreement with
most of the experimental results for these reactions. Woods-Saxon radial wave
functions are used, with their asymptotic forms matched to the experimental
separation energies for bound states, and matched to a binding energy of 0.01
MeV for unbound states. For comparison purposes, some results are given for
harmonic oscillator radial functions. Closest agreement between theory and
experiment is achieved with unrestricted shell-model configurations and
Woods-Saxon radial functions. We obtain for the neutrino-absorption inclusive
cross sections: cm for the
decay-in-flight flux in agreement with the LSND datum of
cm; and cm for the decay-at-rest flux, less than the
experimental result of cm.Comment: 19 pages. ReVTeX. No figure
Fully-Renormalized QRPA fulfills Ikeda sum rule exactly
The renormalized quasiparticle-RPA is reformulated for even-even nuclei using
restrictions imposed by the commutativity of the phonon creation operator with
the total particle number operator. This new version, Fully-Renormalized QRPA
(FR-QRPA), is free from the spurious low-energy solutions. Analytical proof is
given that the Ikeda sum rule is fullfiled within the FR-QRPA.Comment: 9 page
Dynamic generation of maximally entangled photon multiplets by adiabatic passage
The adiabatic passage scheme for quantum state synthesis, in which atomic
Zeeman coherences are mapped to photon states in an optical cavity, is extended
to the general case of two degenerate cavity modes with orthogonal
polarization. Analytical calculations of the dressed-state structure and Monte
Carlo wave-function simulations of the system dynamics show that, for a
suitably chosen cavity detuning, it is possible to generate states of photon
multiplets that are maximally entangled in polarization. These states display
nonclassical correlations of the type described by Greenberger, Horne, and
Zeilinger (GHZ). An experimental scheme to realize a GHZ measurement using
coincidence detection of the photons escaping from the cavity is proposed. The
correlations are found to originate in the dynamics of the adiabatic passage
and persist even if cavity decay and GHZ state synthesis compete on the same
time scale. Beyond entangled field states, it is also possible to generate
entanglement between photons and the atom by using a different atomic
transition and initial Zeeman state.Comment: 22 pages (RevTeX), including 23 postscript figures. To be published
in Physical Review
- …