65 research outputs found

    Mutation of neuron-specific chromatin remodeling subunit BAF53b:rescue of plasticity and memory by manipulating actin remodeling

    Get PDF
    Recent human exome-sequencing studies have implicated polymorphic Brg1-associated factor (BAF) complexes (mammalian SWI/SNF chromatin remodeling complexes) in several intellectual disabilities and cognitive disorders, including autism. However, it remains unclear how mutations in BAF complexes result in impaired cognitive function. Post-mitotic neurons express a neuron-specific assembly, nBAF, characterized by the neuron-specific subunit BAF53b. Subdomain 2 of BAF53b is essential for the differentiation of neuronal precursor cells into neurons. We generated transgenic mice lacking subdomain 2 of Baf53b (BAF53b Delta SB2). Long-term synaptic potentiation (LTP) and long-term memory, both of which are associated with phosphorylation of the actin severing protein cofilin, were assessed in these animals. A phosphorylation mimic of cofilin was stereotaxically delivered into the hippocampus of BAF53b Delta SB2 mice in an effort to rescue LTP and memory. BAF53b Delta SB2 mutant mice show impairments in phosphorylation of synaptic cofilin, LTP, and memory. Both the synaptic plasticity and memory deficits are rescued by overexpression of a phosphorylation mimetic of cofilin. Baseline physiology and behavior were not affected by the mutation or the experimental treatment. This study suggests a potential link between nBAF function, actin cytoskeletal remodeling at the dendritic spine, and memory formation. This work shows that a targeted manipulation of synaptic function can rescue adult plasticity and memory deficits caused by manipulations of nBAF, and thereby provides potential novel avenues for therapeutic development for multiple intellectual disability disorders

    Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2

    Get PDF
    Forebrain neurons have weak intrinsic antioxidant defences compared with astrocytes, but the molecular basis and purpose of this is poorly understood. We show that early in mouse cortical neuronal development in vitro and in vivo, expression of the master-regulator of antioxidant genes, transcription factor NF-E2-related-factor-2 (Nrf2), is repressed by epigenetic inactivation of its promoter. Consequently, in contrast to astrocytes or young neurons, maturing neurons possess negligible Nrf2-dependent antioxidant defences, and exhibit no transcriptional responses to Nrf2 activators, or to ablation of Nrf2’s inhibitor Keap1. Neuronal Nrf2 inactivation seems to be required for proper development: in maturing neurons, ectopic Nrf2 expression inhibits neurite outgrowth and aborization, and electrophysiological maturation, including synaptogenesis. These defects arise because Nrf2 activity buffers neuronal redox status, inhibiting maturation processes dependent on redox-sensitive JNK and Wnt pathways. Thus, developmental epigenetic Nrf2 repression weakens neuronal antioxidant defences but is necessary to create an environment that supports neuronal development

    BCL11A Haploinsufficiency Causes an Intellectual Disability Syndrome and Dysregulates Transcription

    Get PDF
    Intellectual disability (ID) is a common condition with considerable genetic heterogeneity. Next-generation sequencing of large cohorts has identified an increasing number of genes implicated in ID, but their roles in neurodevelopment remain largely unexplored. Here we report an ID syndrome caused by de novo heterozygous missense, nonsense, and frameshift mutations in BCL11A, encoding a transcription factor that is a putative member of the BAF swi/snf chromatin-remodeling complex. Using a comprehensive integrated approach to ID disease modeling, involving human cellular analyses coupled to mouse behavioral, neuroanatomical, and molecular phenotyping, we provide multiple lines of functional evidence for phenotypic effects. The etiological missense variants cluster in the amino-terminal region of human BCL11A, and we demonstrate that they all disrupt its localization, dimerization, and transcriptional regulatory activity, consistent with a loss of function. We show that Bcl11a haploinsufficiency in mice causes impaired cognition, abnormal social behavior, and microcephaly in accordance with the human phenotype. Furthermore, we identify shared aberrant transcriptional profiles in the cortex and hippocampus of these mouse models. Thus, our work implicates BCL11A haploinsufficiency in neurodevelopmental disorders and defines additional targets regulated by this gene, with broad relevance for our understanding of ID and related syndromes.This article is available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site.Wellcome Trust (grant number WT098051)Published (open access

    Examining object location and object recognition memory in mice.

    Full text link
    This unit is designed to provide sufficient instruction for the setup and execution of tests for object location and object recognition in adult mice. This task is ideally suited for the study of a variety of mouse models that examine disease mechanisms and novel therapeutic targets. By altering several key parameters, the experimenter can investigate short-term or long-term memory and look for either memory impairments or enhancements. Object location and object recognition memory tasks rely on a rodent's innate preference for novelty, and can be conducted sequentially in the same cohort of animals. These two tasks avoid the inherent stress induced with other common measures of rodent memory such as fear conditioning and the Morris water maze. This protocol covers detailed instructions on conducting both tasks, as well as key points concerning data collection, analysis, and interpretation

    Promoter-Specific Effects of DREADD Modulation on Hippocampal Synaptic Plasticity and Memory Formation

    Full text link
    Designer receptors exclusively activated by designer drug (DREADDs) are a novel tool with the potential to bidirectionally drive cellular, circuit, and ultimately, behavioral changes. We used DREADDs to evaluate memory formation in a hippocampus-dependent task in mice and effects on synaptic physiology in the dorsal hippocampus. We expressed neuron-specific (hSyn promoter) DREADDs that were either excitatory (HM3D) or inhibitory (HM4D) in the dorsal hippocampus. As predicted, hSyn–HM3D was able to transform a subthreshold learning event into long-term memory (LTM), and hSyn–HM4D completely impaired LTM formation. Surprisingly, the opposite was observed during experiments examining the effects on hippocampal long-term potentiation (LTP). hSyn–HM3D impaired LTP and hSyn–HM4D facilitated LTP. Follow-up experiments indicated that the hSyn–HM3D-mediated depression of fEPSP appears to be driven by presynaptic activation of inhibitory currents, whereas the hSyn–HM4D-mediated increase of fEPSP is induced by a reduction in GABA(A) receptor function. To determine whether these observations were promoter specific, we next examined the effects of using the CaMKIIα promoter that limits expression to forebrain excitatory neurons. CaMKIIα–HM3D in the dorsal hippocampus led to the transformation of a subthreshold learning event into LTM, whereas CaMKIIα–HM4D blocked LTM formation. Consistent with these findings, baseline synaptic transmission and LTP was increased in CaMKIIα–HM3D hippocampal slices, whereas slices from CaMKIIα–HM4D mice produced expected decreases in baseline synaptic transmission and LTP. Together, these experiments further demonstrate DREADDs as being a robust and reliable means of modulating neuronal function to manipulate long-term changes in behavior, while providing evidence for specific dissociations between LTM and LTP. SIGNIFICANCE STATEMENT This study evaluates the efficacy of designer receptors exclusively activated by designer drug (DREADDs) as a means of bidirectionally modulating the hippocampus in not only a hippocampus-dependent task but also in hippocampal synaptic plasticity. This is the first study to evaluate the effects of DREADD-mediated inhibition and excitation in hippocampal long-term potentiation. More specifically, this study evaluates the effect of promoter-specific expression of DREADD viruses in a heterogenic cell population, which revealed surprising effects of different promoters. With chemogenetics becoming a more ubiquitous tool throughout studies investigating circuit-specific function, these data are of broad interest to the neuroscientific community because we have shown that promoter-specific effects can drastically alter synaptic function within a specific region, without parallel changes at the level of behavior

    Promoter-Specific Effects of DREADD Modulation on Hippocampal Synaptic Plasticity and Memory Formation.

    Full text link
    Designer receptors exclusively activated by designer drug (DREADDs) are a novel tool with the potential to bidirectionally drive cellular, circuit, and ultimately, behavioral changes. We used DREADDs to evaluate memory formation in a hippocampus-dependent task in mice and effects on synaptic physiology in the dorsal hippocampus. We expressed neuron-specific (hSyn promoter) DREADDs that were either excitatory (HM3D) or inhibitory (HM4D) in the dorsal hippocampus. As predicted, hSyn-HM3D was able to transform a subthreshold learning event into long-term memory (LTM), and hSyn-HM4D completely impaired LTM formation. Surprisingly, the opposite was observed during experiments examining the effects on hippocampal long-term potentiation (LTP). hSyn-HM3D impaired LTP and hSyn-HM4D facilitated LTP. Follow-up experiments indicated that the hSyn-HM3D-mediated depression of fEPSP appears to be driven by presynaptic activation of inhibitory currents, whereas the hSyn-HM4D-mediated increase of fEPSP is induced by a reduction in GABAA receptor function. To determine whether these observations were promoter specific, we next examined the effects of using the CaMKIIα promoter that limits expression to forebrain excitatory neurons. CaMKIIα-HM3D in the dorsal hippocampus led to the transformation of a subthreshold learning event into LTM, whereas CaMKIIα-HM4D blocked LTM formation. Consistent with these findings, baseline synaptic transmission and LTP was increased in CaMKIIα-HM3D hippocampal slices, whereas slices from CaMKIIα-HM4D mice produced expected decreases in baseline synaptic transmission and LTP. Together, these experiments further demonstrate DREADDs as being a robust and reliable means of modulating neuronal function to manipulate long-term changes in behavior, while providing evidence for specific dissociations between LTM and LTP.Significance statementThis study evaluates the efficacy of designer receptors exclusively activated by designer drug (DREADDs) as a means of bidirectionally modulating the hippocampus in not only a hippocampus-dependent task but also in hippocampal synaptic plasticity. This is the first study to evaluate the effects of DREADD-mediated inhibition and excitation in hippocampal long-term potentiation. More specifically, this study evaluates the effect of promoter-specific expression of DREADD viruses in a heterogenic cell population, which revealed surprising effects of different promoters. With chemogenetics becoming a more ubiquitous tool throughout studies investigating circuit-specific function, these data are of broad interest to the neuroscientific community because we have shown that promoter-specific effects can drastically alter synaptic function within a specific region, without parallel changes at the level of behavior
    corecore