100 research outputs found
Optical intensity interferometry lab tests in preparation of stellar diameter measurements at IACTs at GHz photon rates
Astronomical intensity interferometry enables quantitative measurements of
the source geometry by measuring the photon fluxes in individual telescopes and
correlating them, rather than correlating the electromagnetic waves'
amplitudes. This simplifies realization of large telescope baselines and high
angular resolutions. Imaging Atmospheric Cherenkov Telescopes (IACTs), intended
to detect the optical emission of -ray induced air showers, are
excellent candidates to perform intensity correlations in the optical at
reasonable signal-to-noise ratios. The detected coherence time is on the scale
of to ~seconds - depending on the optical bandwidth of the
measurement - which challenges the detection system to work in a stable and
accurate way. We developed an intensity interferometry setup applicable to
IACTs, which measures the photo currents from photomultipliers and correlates
them offline, and as such is designed to handle the very large photon rates
provided by the telescopes. We present measurements in the lab simulating
starlight using a xenon lamp and measured at different degrees of temporal and
spatial coherence. Necessary calibration procedures are described with the goal
of understanding the measurements quantitatively. Measured coherence times
between femtoseconds (corresponding signal-to-background ratio
) and femtoseconds (signal-to-background ratio )
are in good agreement with expectations, and so are the noise levels in the
correlations, reaching down to , after measurements between
minutes and hour
Parallel synthesis and high throughput dissolution testing of biodegradable polyanhydride copolymers
We have demonstrated that polycondensation reactions can be carried out in a combinatorial fashion and that the polymer library can be screened at high throughput using a rapid prototyping technique to fabricate multiwell substrates. A linearly varying compositional library of 100 different biodegradable polyanhydride random copolymers that are promising carriers for controlled drug delivery was designed, fabricated, and characterized by IR microscopy within a few hours. The polyanhydride copolymer library was based on 1,6-bis(p-carboxyphenoxy)hexane (CPH) and sebacic anhydride (SA) and was characterized with infrared microspectroscopy to determine the composition within each well. Since degradation and release rates depend on copolymer composition, we also developed new high-throughput methods to investigate drug release from this library of copolymers by designing specific wells for each task. A subset of this library was chosen, and a substrate was designed and fabricated to enable the synthesis and monitoring of dye dissolution from a range of polyanhydride copolymers in a parallel fashion using a CCD camera. Multisample substrates were fabricated with a novel rapid prototyping method that consists of an organic solvent-resistant array of 10 x 10 microwells of 2-μL volume each. The libraries were deposited with a custom-built liquid dispensing system consisting of a series of computer-controlled volume-dispensing pumps and XYZ motion stages. The parallel dye dissolution study displayed a decreasing rate of release with increasing CPH content. This result agrees with previously published data for dye release from poly(CPH-co-SA) copolymers. The methodology described in this work is amenable to numerous applications in the arenas of high-throughput polymer synthesis and characterization
Parallel Synthesis and High Throughput Dissolution Testing of Biodegradable Polyanhydride Copolymers
Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution
Chromosome evolution presents an enigma in the mega-diverse Lepidoptera. Most species exhibit constrained chromosome evolution with nearly identical haploid chromosome counts and chromosome-level gene collinearity among species more than 140 million years divergent. However, a few species possess radically inflated chromosomal counts due to extensive fission and fusion events. To address this enigma of constraint in the face of an exceptional ability to change, we investigated an unprecedented reorganization of the standard lepidopteran chromosome structure in the green-veined white butterfly (Pieris napi). We find that gene content in P. napi has been extensively rearranged in large collinear blocks, which until now have been masked by a haploid chromosome number close to the lepidopteran average. We observe that ancient chromosome ends have been maintained and collinear blocks are enriched for functionally related genes suggesting both a mechanism and a possible role for selection in determining the boundaries of these genome-wide rearrangements.Peer reviewe
EEG Correlates of Attentional Load during Multiple Object Tracking
While human subjects tracked a subset of ten identical, randomly-moving objects, event-related potentials (ERPs) were evoked at parieto-occipital sites by task-irrelevant flashes that were superimposed on either tracked (Target) or non-tracked (Distractor) objects. With ERPs as markers of attention, we investigated how allocation of attention varied with tracking load, that is, with the number of objects that were tracked. Flashes on Target discs elicited stronger ERPs than did flashes on Distractor discs; ERP amplitude (0–250 ms) decreased monotonically as load increased from two to three to four (of ten) discs. Amplitude decreased more rapidly for Target discs than Distractor discs. As a result, with increasing tracking loads, the difference between ERPs to Targets and Distractors diminished. This change in ERP amplitudes with load accords well with behavioral performance, suggesting that successful tracking depends upon the relationship between the neural signals associated with attended and non-attended objects
Trans Fatty Acids Induce Vascular Inflammation and Reduce Vascular Nitric Oxide Production in Endothelial Cells
Intake of trans fatty acids (TFA), which are consumed by eating foods made from partially hydrogenated vegetable oils, is associated with a higher risk of cardiovascular disease. This relation can be explained by many factors including TFA's negative effect on endothelial function and reduced nitric oxide (NO) bioavailability. In this study we investigated the effects of three different TFA (2 common isomers of C18 found in partially hydrogenated vegetable oil and a C18 isomer found from ruminant-derived—dairy products and meat) on endothelial NF-κB activation and nitric oxide (NO) production. Human endothelial cells were treated with increasing concentrations of Elaidic (trans-C18:1 (9 trans)), Linoelaidic (trans-C18:2 (9 trans, 12 trans)), and Transvaccenic (trans-C18:1 (11 trans)) for 3 h. Both Elaidic and Linoelaidic acids were associated with increasing NF-κB activation as measured by IL-6 levels and phosphorylation of IκBα, and impairment of endothelial insulin signaling and NO production, whereas Transvaccenic acid was not associated with these responses. We also measured superoxide production, which has been hypothesized to be necessary in fatty acid-dependent activation of NF-κB. Both Elaidic acid and Linoelaidic acid are associated with increased superoxide production, whereas Transvaccenic acid (which did not induce inflammatory responses) did not increase superoxide production. We observed differential activation of endothelial superoxide production, NF-κB activation, and reduction in NO production by different C18 isomers suggesting that the location and number of trans double bonds effect endothelial NF-κB activation
A separated vortex ring underlies the flight of the dandelion
Wind-dispersed plants have evolved ingenious ways to lift their seeds1,2. The common dandelion uses a bundle of drag-enhancing bristles (the pappus) that helps to keep their seeds aloft. This passive flight mechanism is highly effective, enabling seed dispersal over formidable distances3,4; however, the physics underpinning pappus-mediated flight remains unresolved. Here we visualized the flow around dandelion seeds, uncovering an extraordinary type of vortex. This vortex is a ring of recirculating fluid, which is detached owing to the flow passing through the pappus. We hypothesized that the circular disk-like geometry and the porosity of the pappus are the key design features that enable the formation of the separated vortex ring. The porosity gradient was surveyed using microfabricated disks, and a disk with a similar porosity was found to be able to recapitulate the flow behaviour of the pappus. The porosity of the dandelion pappus appears to be tuned precisely to stabilize the vortex, while maximizing aerodynamic loading and minimizing material requirements. The discovery of the separated vortex ring provides evidence of the existence of a new class of fluid behaviour around fluid-immersed bodies that may underlie locomotion, weight reduction and particle retention in biological and manmade structures
Stable isotopic composition of fossil mammal teeth and environmental change in southwestern South Africa during the Pliocene and Pleistocene
The past 5 million years mark a global change from the warmer, more stable climate of the Pliocene to the initiation of glacial-interglacial cycles during the Pleistocene. Marine core sediment records located off the coast of southwestern Africa indicate aridification and intensified upwelling in the Benguela Current over the Pliocene and Pleistocene. However, few terrestrial records document environmental change in southwestern Africa over this time interval. Here we synthesize new and published carbon and oxygen isotope data of the teeth from large mammals (>6 kg) at Langebaanweg (~5 million years ago, Ma), Elandsfontein (1.0 – 0.6 Ma), and Hoedjiespunt (0.35 – 0.20 Ma), to evaluate environmental change in southwestern Africa between the Pliocene and Pleistocene. The majority of browsing and grazing herbivores from these sites yield enamel 13 C values within the range expected for animals with a pure C3 diet, however some taxa have enamel 13C values that suggest the presence of small amounts C4 grasses at times during the Pleistocene. Considering that significant amounts of C4 grasses require a warm growing season, these results indicate that the winter rainfall zone, characteristic of the region today, could have been in place for the past 5 million years. The average 18O value of the herbivore teeth increases ~4.4‰ between Langebaanweg and Elandsfontein for all taxa except suids. This increase may solely be a function of a change in hydrology between the fluvial system at Langebaanweg and the spring-fed environments at Elandsfontein, or a combination of factors that include depositional context, regional circulation and global climate. However, an increase in regional aridity or global cooling between the early Pliocene and mid-Pleistocene cannot explain the entire increase in enamel 18O values. Spring-fed environments like those at Elandsfontein may have 75 provided critical resources for mammalian fauna in the mid-Pleistocene within an increasingly arid southwestern Africa ecosystem
Stable isotope ecology of Cape dune mole-rats (Bathyergus suillus) from Elandsfontein, South Africa: implications for C4 vegetation and hominin paleobiology in the Cape Floral Region
The archaeological and paleontological records from the west coast of South Africa have potential to provide insights into ecosystem dynamics in the region during the mid Pleistocene. Although the fossil record suggests an ecosystem quite different than that of the region today, we understand little about the ecological factors that contributed to this disparity. The site of Elandsfontein (EFT) dates to between 1.0 and 0.6 million years ago (Ma), preserves in situ lithic and faunal materials found in direct association with each other, and provides the rare opportunity to examine the relationship between hominin behavioural variability and landscape heterogeneity in a winter rainfall ecosystem. In this study, we examine the stable carbon isotopic composition of a large sample (n = 81) of Cape dune mole-rats (Bathyergus suillus) and contemporaneous large mammals (> 6 kg; n = 194) from EFT. We find that δ13C values of B. suillus are significantly different to those of contemporaneous large mammals from EFT indicating a significant presence of plants utilizing the C4 photosynthetic pathway during the mid-Pleistocene, in contrast to present C3 dominated ecosystems along the west coast of South Africa. Additionally, we find that artifact density at EFT localities is positively correlated with δ13C values in B. suillus enamel suggesting that evidence of more intense hominin occupation may be associated with the presence of more C4 vegetation. Lastly, we hypothesize that this unique distribution of vegetation 1) provided abundant resources for both hominin and non-hominin taxa and 2) may have concentrated hominin and animal behavior in certain places on the ancient landscape
Host Immune Responses to a Viral Immune Modulating Protein: Immunogenicity of Viral Interleukin-10 in Rhesus Cytomegalovirus-Infected Rhesus Macaques
, consistent with a central role for rhcmvIL-10 during acute virus-host interactions. Since cmvIL-10 and rhcmvIL-10 are extremely divergent from the cIL-10 of their respective hosts, vaccine-mediated neutralization of their function could inhibit establishment of viral persistence without inhibition of cIL-10.As a prelude to evaluating cmvIL-10-based vaccines in humans, the rhesus macaque model of HCMV was used to interrogate peripheral and mucosal immune responses to rhcmvIL-10 in RhCMV-infected animals. ELISA were used to detect rhcmvIL-10-binding antibodies in plasma and saliva, and an IL-12-based bioassay was used to quantify plasma antibodies that neutralized rhcmvIL-10 function. rhcmvIL-10 is highly immunogenic during RhCMV infection, stimulating high avidity rhcmvIL-10-binding antibodies in the plasma of all infected animals. Most infected animals also exhibited plasma antibodies that partially neutralized rhcmvIL-10 function but did not cross-neutralize the function of rhesus cIL-10. Notably, minimally detectable rhcmvIL-10-binding antibodies were detected in saliva.This study demonstrates that rhcmvIL-10, as a surrogate for cmvIL-10, is a viable vaccine candidate because (1) it is highly immunogenic during natural RhCMV infection, and (2) neutralizing antibodies to rhcmvIL-10 do not cross-react with rhesus cIL-10. Exceedingly low rhcmvIL-10 antibodies in saliva further suggest that the oral mucosa, which is critical in RhCMV natural history, is associated with suboptimal anti-rhcmvIL-10 antibody responses
- …