1,431 research outputs found

    Homodyne detection for measuring internal quantum correlations of optical pulses

    Full text link
    A new method is described for determining the quantum correlations at different times in optical pulses by using balanced homodyne detection. The signal pulse and sequences of ultrashort test pulses are superimposed, where for chosen distances between the test pulses their relative phases and intensities are varied from measurement to measurement. The correlation statistics of the signal pulse is obtained from the time-integrated difference photocurrents measured.Comment: 7 pages, A4.sty include

    Detection of Supernova Neutrinos by Neutrino-Proton Elastic Scattering

    Get PDF
    We propose that neutrino-proton elastic scattering, ν+pν+p\nu + p \to \nu + p, can be used for the detection of supernova neutrinos in scintillator detectors. Though the proton recoil kinetic energy spectrum is soft, with Tp2Eν2/MpT_p \simeq 2 E_\nu^2/M_p, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from νˉe+pe++n\bar{\nu}_e + p \to e^+ + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy and temperature of νμ\nu_\mu, ντ\nu_\tau, νˉμ\bar{\nu}_\mu, and νˉτ\bar{\nu}_\tau. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.Comment: 10 pages, 9 figures, revtex

    The dependence of metal-silicate partitioning of moderately volatile elements on oxygen fugacity and Si contents of Fe metal: Implications for their valence states in silicate liquids

    Get PDF
    The volatile siderophile elements are important tracers of the delivery of volatile elements to the Earth. Their concentrations in the bulk silicate Earth are a function of the relative timing of their accretion and their sequestration into the core: a comprehensive understanding of their metal-silicate partitioning behaviour is therefore required in order to infer the volatile element accretion history. We present new partitioning data between liquid metal and liquid silicate at 11 GPa for a suite of volatile siderophile elements: Ag, As, Au, Cu, Ge, P, Pb, Sb, Sn. We focus particularly on determining their valence states and the effects of Si on partitioning, which are required in order to extrapolate from experimental conditions to core-formation conditions. It was found that all elements have weak to strong positive interaction parameters with Si. At low fO2, redox equilibria dictate that the siderophile elements should become more siderophile. However, at low fO2, Si also partitions more strongly into the metal. Given the repulsive nature of the interaction between Si and the elements of interest, the increased Si concentration at low fO2 will counteract the expected increase in the partition coefficient, making these elements less siderophile than expected at very reducing conditions. This causes the linear relationship between fO2 and log(D) to become non-linear at low fO2, which we account for by fitting an interaction parameter between Si and the elements of interest. This has implications for the interpretation of experimental results, because the valence cannot be determined from the slope of log(D) vs. logfO2 if low fO2, high Si metal compositions are employed without applying an activity correction. This also has implications for the extrapolation of experimental partitioning data to core-formation conditions: reducing conditions in the early stages of core formation do not necessarily result in complete or even strong depletion of siderophile elements when Si is present as a light element in the core-forming metal phase

    Quantum mechanical counterpart of nonlinear optics

    Get PDF
    Raman-type laser excitation of a trapped atom allows one to realize the quantum mechanical counterpart of phenomena of nonlinear optics, such as Kerr-type nonlinearities, parametric amplification, and multi-mode mixing. Additionally, huge nonlinearities emerge from the interference of the atomic wave function with the laser waves. They lead to a partitioning of the phase space accompanied by a significantly different action of the time evolution in neighboring phase-space zones. For example, a nonlinearly modified coherent "displacement" of the motional quantum state may induce strong amplitude squeezing and quantum interferences.Comment: 6 pages, 4 figures, to be published in Phys. Rev. A 55 (June

    Motional effects of single trapped atomic/ionic qubit

    Get PDF
    We investigate theoretical decoherence effects of the motional degrees of freedom of a single trapped atomic/ionic electronically coded qubit. For single bit rotations from a resonant running wave laser field excitation, we found the achievable fidelity to be determined by a single parameter characterized by the motional states. Our quantitative results provide a useful realistic view for current experimental efforts in quantum information and computing.Comment: 3 fig

    The angular distribution of the reaction νˉe+pe++n\bar{\nu}_e + p \to e^+ + n

    Get PDF
    The reaction νˉe+pe++n\bar{\nu}_e + p \to e^+ + n is very important for low-energy (Eν60E_\nu \lesssim 60 MeV) antineutrino experiments. In this paper we calculate the positron angular distribution, which at low energies is slightly backward. We show that weak magnetism and recoil corrections have a large effect on the angular distribution, making it isotropic at about 15 MeV and slightly forward at higher energies. We also show that the behavior of the cross section and the angular distribution can be well-understood analytically for Eν60E_\nu \lesssim 60 MeV by calculating to O(1/M){\cal O}(1/M), where MM is the nucleon mass. The correct angular distribution is useful for separating νˉe+pe++n\bar{\nu}_e + p \to e^+ + n events from other reactions and detector backgrounds, as well as for possible localization of the source (e.g., a supernova) direction. We comment on how similar corrections appear for the lepton angular distributions in the deuteron breakup reactions νˉe+de++n+n\bar{\nu}_e + d \to e^+ + n + n and νe+de+p+p\nu_e + d \to e^- + p + p. Finally, in the reaction νˉe+pe++n\bar{\nu}_e + p \to e^+ + n, the angular distribution of the outgoing neutrons is strongly forward-peaked, leading to a measurable separation in positron and neutron detection points, also potentially useful for rejecting backgrounds or locating the source direction.Comment: 10 pages, including 5 figure

    Shell-model calculations of neutrino scattering from 12C

    Get PDF
    Neutrino reaction cross-sections, (νμ,μ)(\nu_\mu,\mu^-), (νe,e)(\nu_e,e^-), μ\mu-capture and photoabsorption rates on 12^{12}C are computed within a large-basis shell-model framework, which included excitations up to 4ω4\hbar\omega. When ground-state correlations are included with an open pp-shell the predictions of the calculations are in reasonable agreement with most of the experimental results for these reactions. Woods-Saxon radial wave functions are used, with their asymptotic forms matched to the experimental separation energies for bound states, and matched to a binding energy of 0.01 MeV for unbound states. For comparison purposes, some results are given for harmonic oscillator radial functions. Closest agreement between theory and experiment is achieved with unrestricted shell-model configurations and Woods-Saxon radial functions. We obtain for the neutrino-absorption inclusive cross sections: σˉ=13.8×1040\bar{\sigma} = 13.8 \times 10^{-40} cm2^2 for the (νμ,μ)(\nu_{\mu},\mu^{-}) decay-in-flight flux in agreement with the LSND datum of (12.4±1.8)×1040(12.4 \pm 1.8) \times 10^{-40} cm2^2; and σˉ=12.5×1042\bar{\sigma} = 12.5 \times 10^{-42} cm2^2 for the (νe,e)(\nu_{e},e^{-}) decay-at-rest flux, less than the experimental result of (14.4±1.2)×1042(14.4 \pm 1.2) \times 10^{-42} cm2^2.Comment: 19 pages. ReVTeX. No figure

    Fully-Renormalized QRPA fulfills Ikeda sum rule exactly

    Full text link
    The renormalized quasiparticle-RPA is reformulated for even-even nuclei using restrictions imposed by the commutativity of the phonon creation operator with the total particle number operator. This new version, Fully-Renormalized QRPA (FR-QRPA), is free from the spurious low-energy solutions. Analytical proof is given that the Ikeda sum rule is fullfiled within the FR-QRPA.Comment: 9 page

    Dynamic generation of maximally entangled photon multiplets by adiabatic passage

    Get PDF
    The adiabatic passage scheme for quantum state synthesis, in which atomic Zeeman coherences are mapped to photon states in an optical cavity, is extended to the general case of two degenerate cavity modes with orthogonal polarization. Analytical calculations of the dressed-state structure and Monte Carlo wave-function simulations of the system dynamics show that, for a suitably chosen cavity detuning, it is possible to generate states of photon multiplets that are maximally entangled in polarization. These states display nonclassical correlations of the type described by Greenberger, Horne, and Zeilinger (GHZ). An experimental scheme to realize a GHZ measurement using coincidence detection of the photons escaping from the cavity is proposed. The correlations are found to originate in the dynamics of the adiabatic passage and persist even if cavity decay and GHZ state synthesis compete on the same time scale. Beyond entangled field states, it is also possible to generate entanglement between photons and the atom by using a different atomic transition and initial Zeeman state.Comment: 22 pages (RevTeX), including 23 postscript figures. To be published in Physical Review
    corecore