575 research outputs found

    SARS-CoV-2 structural features may explain limited neutralizing-antibody responses.

    Get PDF
    Neutralizing antibody responses of SARS-CoV-2-infected patients may be low and of short duration. We propose here that coronaviruses employ a structural strategy to avoid strong and enduring antibody responses. Other viruses induce optimal and long-lived neutralizing antibody responses, thanks to 20 or more repetitive, rigid antigenic epitopes, spaced by 5–10 nm, present on the viral surface. Such arrays of repetitive and highly organized structures are recognized by the immune system as pathogen-associated structural patterns (PASPs), which are characteristic for pathogen surfaces. In contrast, coronaviruses are large particles with long spikes (S protein) embedded in a fluid membrane. Therefore, the neutralizing epitopes (which are on the S protein) are loosely “floating” and widely spaced by an average of about 25 nm. Consequently, recruitment of complement is poor and stimulation of B cells remains suboptimal, offering an explanation for the inefficient and short-lived neutralizing antibody responses

    On the Normalization of the Neutrino-Deuteron Cross Section

    Get PDF
    As is well-known, comparison of the solar neutrino fluxes measured in SuperKamiokande (SK) by ν+eν+e\nu + e^- \to \nu + e^- and in the Sudbury Neutrino Observatory (SNO) by νe+de+p+p\nu_e + d \to e^- + p + p can provide a ``smoking gun'' signature for neutrino oscillations as the solution to the solar neutrino puzzle. This occurs because SK has some sensitivity to all active neutrino flavors whereas SNO can isolate electron neutrinos. This comparison depends crucially on the normalization and uncertainty of the theoretical charged-current neutrino-deuteron cross section. We address a number of effects which are significant enough to change the interpretation of the SK--SNO comparison.Comment: 4 pages, 1 figure, submitted to PR

    Detection of Supernova Neutrinos by Neutrino-Proton Elastic Scattering

    Get PDF
    We propose that neutrino-proton elastic scattering, ν+pν+p\nu + p \to \nu + p, can be used for the detection of supernova neutrinos in scintillator detectors. Though the proton recoil kinetic energy spectrum is soft, with Tp2Eν2/MpT_p \simeq 2 E_\nu^2/M_p, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from νˉe+pe++n\bar{\nu}_e + p \to e^+ + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy and temperature of νμ\nu_\mu, ντ\nu_\tau, νˉμ\bar{\nu}_\mu, and νˉτ\bar{\nu}_\tau. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.Comment: 10 pages, 9 figures, revtex

    Potential for Supernova Neutrino Detection in MiniBooNE

    Full text link
    The MiniBooNE detector at Fermilab is designed to search for νμνe\nu_\mu \to \nu_e oscillation appearance at Eν1GeVE_\nu \sim 1 {\rm GeV} and to make a decisive test of the LSND signal. The main detector (inside a veto shield) is a spherical volume containing 0.680 ktons of mineral oil. This inner volume, viewed by 1280 phototubes, is primarily a \v{C}erenkov medium, as the scintillation yield is low. The entire detector is under a 3 m earth overburden. Though the detector is not optimized for low-energy (tens of MeV) events, and the cosmic-ray muon rate is high (10 kHz), we show that MiniBooNE can function as a useful supernova neutrino detector. Simple trigger-level cuts can greatly reduce the backgrounds due to cosmic-ray muons. For a canonical Galactic supernova at 10 kpc, about 190 supernova νˉe+pe++n\bar{\nu}_e + p \to e^+ + n events would be detected. By adding MiniBooNE to the international network of supernova detectors, the possibility of a supernova being missed would be reduced. Additionally, the paths of the supernova neutrinos through Earth will be different for MiniBooNE and other detectors, thus allowing tests of matter-affected mixing effects on the neutrino signal.Comment: Added references, version to appear in PR

    Statistical Analysis of Different Muon-antineutrino->Electron-antineutrino Searches

    Full text link
    A combined statistical analysis of the experimental results of the LSND and KARMEN \numubnueb oscillation search is presented. LSND has evidence for neutrino oscillations that is not confirmed by the KARMEN experiment. This joint analysis is based on the final likelihood results for both data sets. A frequentist approach is applied to deduce confidence regions. At a combined confidence level of 36%, there is no area of oscillation parameters compatible with both experiments. For the complementary confidence of 1-0.36=64%, there are two well defined regions of oscillation parameters (sin^2(2th),Dm^2) compatible with both experiments.Comment: 25 pages, including 10 figures, submitted to Phys. Rev.

    Can a supernova be located by its neutrinos?

    Get PDF
    A future core-collapse supernova in our Galaxy will be detected by several neutrino detectors around the world. The neutrinos escape from the supernova core over several seconds from the time of collapse, unlike the electromagnetic radiation, emitted from the envelope, which is delayed by a time of order hours. In addition, the electromagnetic radiation can be obscured by dust in the intervening interstellar space. The question therefore arises whether a supernova can be located by its neutrinos alone. The early warning of a supernova and its location might allow greatly improved astronomical observations. The theme of the present work is a careful and realistic assessment of this question, taking into account the statistical significance of the various neutrino signals. Not surprisingly, neutrino-electron forward scattering leads to a good determination of the supernova direction, even in the presence of the large and nearly isotropic background from other reactions. Even with the most pessimistic background assumptions, SuperKamiokande (SK) and the Sudbury Neutrino Observatory (SNO) can restrict the supernova direction to be within circles of radius 55^\circ and 2020^\circ, respectively. Other reactions with more events but weaker angular dependence are much less useful for locating the supernova. Finally, there is the oft-discussed possibility of triangulation, i.e., determination of the supernova direction based on an arrival time delay between different detectors. Given the expected statistics we show that, contrary to previous estimates, this technique does not allow a good determination of the supernova direction.Comment: 11 pages including 2 figures. Revised version corrects typos, adds some brief comment

    Do solar neutrinos decay?

    Full text link
    Despite the fact that the solar neutrino flux is now well-understood in the context of matter-affected neutrino mixing, we find that it is not yet possible to set a strong and model-independent bound on solar neutrino decays. If neutrinos decay into truly invisible particles, the Earth-Sun baseline defines a lifetime limit of \tau/m \agt 10^{-4} s/eV. However, there are many possibilities which must be excluded before such a bound can be established. There is an obvious degeneracy between the neutrino lifetime and the mixing parameters. More generally, one must also allow the possibility of active daughter neutrinos and/or antineutrinos, which may partially conceal the characteristic features of decay. Many of the most exotic possibilities that presently complicate the extraction of a decay bound will be removed if the KamLAND reactor antineutrino experiment confirms the large-mixing angle solution to the solar neutrino problem and measures the mixing parameters precisely. Better experimental and theoretical constraints on the 8^8B neutrino flux will also play a key role, as will tighter bounds on absolute neutrino masses. Though the lifetime limit set by the solar flux is weak, it is still the strongest direct limit on non-radiative neutrino decay. Even so, there is no guarantee (by about eight orders of magnitude) that neutrinos from astrophysical sources such as a Galactic supernova or distant Active Galactic Nuclei will not decay.Comment: Very minor corrections, corresponds to published versio

    Quark Imaging in the Proton Via Quantum Phase-Space Distributions

    Full text link
    We develop the concept of quantum phase-space (Wigner) distributions for quarks and gluons in the proton. To appreciate their physical content, we analyze the contraints from special relativity on the interpretation of elastic form factors, and examine the physics of the Feynman parton distributions in the proton's rest frame. We relate the quark Wigner functions to the transverse-momentum dependent parton distributions and generalized parton distributions, emphasizing the physical role of the skewness parameter. We show that the Wigner functions allow to visualize quantum quarks and gluons using the language of the classical phase space. We present two examples of the quark Wigner distributions and point out some model-independent features.Comment: 20 pages with 3 fiture

    Lifetime Differences, direct CP Violation and Partial Widths in D0 Meson Decays to K+K- and pi+pi-

    Full text link
    We describe several measurements using the decays D0->K+K- and pi+pi-. We find the ratio of partial widths, Gamma(D0->K+K-)/Gamma(D0->pi+pi-), to be 2.96+/-0.16+/-0.15, where the first error is statistical and the second is systematic. We observe no evidence for direct CP violation, obtaining A_CP(KK) = (0.0+/-2.2+/-0.8)% and A_CP(pipi = (1.9+/-3.2+/-0.8)%. In the limit of no CP violation we measure the mixing parameter y_CP = -0.012+/-0.025+/-0.014 by measuring the lifetime difference between D0->K+ K- or pi+pi- and the CP neutral state, D0->K-pi+. We see no evidence for mixing.Comment: 14 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PRD, Rapid Communicatio

    Anti-Search for the Glueball Candidate f_J(2220) in Two-Photon Interactions

    Full text link
    Using 13.3 fb^{-1} of e^+e^- data recorded with the CLEO II and CLEO II.V detector configurations at CESR, we have searched for f_J(2220) decays to K^0_{S} K^0_{S} in untagged two-photon interactions. We report an upper limit on the product of the two-photon partial width and the branching fraction, Gamma_gamma gamma cdot B (f_J(2220) to K^0_{S} K^0_{S}) of less than 1.1 eV at the 95% C.L: systematic uncertainties are included. This dataset is four times larger than that used in the previous CLEO publication.Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, Submitted to PRD (R
    corecore