56 research outputs found

    Microarray-Based Approach Identifies Differentially Expressed MicroRNAs in Porcine Sexually Immature and Mature Testes

    Get PDF
    MicroRNAs (miRNAs) are short non-coding RNA molecules which are proved to be involved in mammalian spermatogenesis. Their expression and function in the porcine germ cells are not fully understood.We employed a miRNA microarray containing 1260 unique miRNA probes to evaluate the miRNA expression patterns between sexually immature (60-day) and mature (180-day) pig testes. One hundred and twenty nine miRNAs representing 164 reporter miRNAs were expressed differently (p<0.1). Fifty one miRNAs were significantly up-regulated and 78 miRNAs were down-regulated in mature testes. Nine of these differentially expressed miRNAs were validated using quantitative RT-PCR assay. Totally 15,919 putative miRNA-target sites were detected by using RNA22 method to align 445 NCBI pig cDNA sequences with these 129 differentially expressed miRNAs, and seven putative target genes involved in spermatogenesis including DAZL, RNF4 gene were simply confirmed by quantitative RT-PCR.Overall, the results of this study indicated specific miRNAs expression in porcine testes and suggested that miRNAs had a role in regulating spermatogenesis

    Vav3 oncogene activates estrogen receptor and its overexpression may be involved in human breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previous study revealed that Vav3 oncogene is overexpressed in human prostate cancer, activates androgen receptor, and stimulates growth in prostate cancer cells. The current study is to determine a potential role of Vav3 oncogene in human breast cancer and impact on estrogen receptor a (ERα)-mediated signaling axis.</p> <p>Methods</p> <p>Immunohistochemistry analysis was performed in 43 breast cancer specimens and western blot analysis was used for human breast cancer cell lines to determine the expression level of Vav3 protein. The impact of Vav3 on breast cancer cell growth was determined by siRNA knockdown of Vav3 expression. The role of Vav3 in ERα activation was examined in luciferase reporter assays. Deletion mutation analysis of Vav3 protein was performed to localize the functional domain involved in ERα activation. Finally, the interaction of Vav3 and ERα was assessed by GST pull-down analysis.</p> <p>Results</p> <p>We found that Vav3 was overexpressed in 81% of human breast cancer specimens, particularly in poorly differentiated lesions. Vav3 activated ERα partially via PI3K-Akt signaling and stimulated growth of breast cancer cells. Vav3 also potentiated EGF activity for cell growth and ERα activation in breast cancer cells. More interestingly, we found that Vav3 complexed with ERα. Consistent with its function for AR, the DH domain of Vav3 was essential for ERα activation.</p> <p>Conclusion</p> <p>Vav3 oncogene is overexpressed in human breast cancer. Vav3 complexes with ERα and enhances ERα activity. These findings suggest that Vav3 overexpression may aberrantly enhance ERα-mediated signaling axis and play a role in breast cancer development and/or progression.</p

    The DNA mismatch repair gene hMSH2 is a potent coactivator of oestrogen receptor α

    Get PDF
    The DNA mismatch repair gene is a key regulator in the elimination of base–base mismatches and insertion/deletion loops (IDLs). Human MutS homologue 2 (hMSH2), originally identified as a human homologue of the bacterial MutS, is a tumour suppressor gene frequently mutated in hereditary nonpolyposis colorectal cancer. Hereditary nonpolyposis colorectal cancer is characterised by the early onset of colorectal cancer and the development of extracolonic cancers such as endometrial, ovarian, and urological cancers. Oestrogen receptor (ER) α and β are members of a nuclear receptor (NR) superfamily. Ligand-dependent transcription of ER is regulated by the p160 steroid receptor coactivator family, the thyroid hormone receptor-associated proteins/the vitamin D receptor-interacting proteins (TRAP/DRIP) mediator complex, and the TATA box-binding protein (TBP)-free TBP associated factor complex (TFTC) type histone acetyltransferase complex. Here, we report the interaction between ER α/β and hMSH2. Immunoprecipitation and glutathione-S-transferase pulldown assay revealed that ER α and hMSH2 interacted in a ligand-dependent manner, whereas ER β and hMSH2 interacted in a ligand-independent manner. Oestrogen receptor α/β bound to hMSH2 through the hMSH3/hMSH6 interaction domain of hMSH2. In a transient expression assay, hMSH2 potentiated the transactivation function of liganded ER α, but not that of ER β. These results suggest that hMSH2 may play an important role as a putative coactivator in ER α dependent gene expression

    Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy

    Get PDF
    Estrogen receptor (ER) has a crucial role in normal breast development and is expressed in the most common breast cancer subtypes. Importantly, its expression is very highly predictive for response to endocrine therapy. Current endocrine therapies for ER-positive breast cancers target ER function at multiple levels. These include targeting the level of estrogen, blocking estrogen action at the ER, and decreasing ER levels. However, the ultimate effectiveness of therapy is limited by either intrinsic or acquired resistance. Identifying the factors and pathways responsible for sensitivity and resistance remains a challenge in improving the treatment of breast cancer. With a better understanding of coordinated action of ER, its coregulatory factors, and the influence of other intracellular signaling cascades, improvements in breast cancer therapy are emerging
    corecore