35 research outputs found

    ArtWhisperer: A Dataset for Characterizing Human-AI Interactions in Artistic Creations

    Full text link
    As generative AI becomes more prevalent, it is important to study how human users interact with such models. In this work, we investigate how people use text-to-image models to generate desired target images. To study this interaction, we created ArtWhisperer, an online game where users are given a target image and are tasked with iteratively finding a prompt that creates a similar-looking image as the target. Through this game, we recorded over 50,000 human-AI interactions; each interaction corresponds to one text prompt created by a user and the corresponding generated image. The majority of these are repeated interactions where a user iterates to find the best prompt for their target image, making this a unique sequential dataset for studying human-AI collaborations. In an initial analysis of this dataset, we identify several characteristics of prompt interactions and user strategies. People submit diverse prompts and are able to discover a variety of text descriptions that generate similar images. Interestingly, prompt diversity does not decrease as users find better prompts. We further propose a new metric to quantify the steerability of AI using our dataset. We define steerability as the expected number of interactions required to adequately complete a task. We estimate this value by fitting a Markov chain for each target task and calculating the expected time to reach an adequate score in the Markov chain. We quantify and compare AI steerability across different types of target images and two different models, finding that images of cities and natural world images are more steerable than artistic and fantasy images. These findings provide insights into human-AI interaction behavior, present a concrete method of assessing AI steerability, and demonstrate the general utility of the ArtWhisperer dataset.Comment: 26 pages, 20 figure

    Harmless interpolation of noisy data in regression

    Get PDF
    A continuing mystery in understanding the empirical success of deep neural networks has been in their ability to achieve zero training error and yet generalize well, even when the training data is noisy and there are more parameters than data points. We investigate this "overparametrization" phenomena in the classical underdetermined linear regression problem, where all solutions that minimize training error interpolate the data, including noise. We give a bound on how well such interpolative solutions can generalize to fresh test data, and show that this bound generically decays to zero with the number of extra features, thus characterizing an explicit benefit of overparameterization. For appropriately sparse linear models, we provide a hybrid interpolating scheme (combining classical sparse recovery schemes with harmless noise-fitting) to achieve generalization error close to the bound on interpolative solutions.Comment: 17 pages, presented at ITA in San Diego in Feb 201
    corecore