6 research outputs found

    Low-cost wearable multichannel surface EMG acquisition for prosthetic hand control

    Get PDF
    Prosthetic hand control based on the acquisition and processing of surface electromyography signals (sEMG) is a well-established method that makes use of the electric potentials evoked by the physiological contraction processes of one or more muscles. Furthermore intelligent mobile medical devices are on the brink of introducing safe and highly sophisticated systems to help a broad patient community to regain a considerable amount of life quality. The major challenges which are inherent in such integrated system’s design are mainly to be found in obtaining a compact system with a long mobile autonomy, capable of delivering the required signal requirements for EMG based prosthetic control with up to 32 simultaneous acquisition channels and – with an eye on a possible future exploitation as a medical device – a proper perspective on a low priced system. Therefore, according to these requirements we present a wireless, mobile platform for acquisition and communication of sEMG signals embedded into a complete mobile control system structure. This environment further includes a portable device such as a laptop providing the necessary computational power for the control and a commercially available robotic handprosthesis. Means of communication among those devices are based on the Bluetooth standard. We show, that the developed low cost mobile device can be used for proper prosthesis control and that the device can rely on a continuous operation for the usual daily life usage of a patient

    Finally! Insights into the ARCHES Lunar Planetary Exploration Analogue Campaign on Etna in summer 2022

    Get PDF
    This paper summarises the first outcomes of the space demonstration mission of the ARCHES project which could have been performed this year from 13 june until 10 july on Italy’s Mt. Etna in Sicily. After the second postponement related to COVID from the initially for 2020 planed campaign, we are now very happy to report, that the whole campaign with more than 65 participants for four weeks has been successfully conduced. In this short overview paper, we will refer to all other publication here on IAC22. This paper includes an overview of the performed 4-week campaign and the achieved mission goals and first results but also share our findings on the organisational and planning aspects

    The ARCHES Space-Analogue Demonstration Mission: Towards Heterogeneous Teams of Autonomous Robots for Collaborative Scientific Sampling in Planetary Exploration

    Full text link
    © 2016 IEEE. Teams of mobile robots will play a crucial role in future missions to explore the surfaces of extraterrestrial bodies. Setting up infrastructure and taking scientific samples are expensive tasks when operating in distant, challenging, and unknown environments. In contrast to current single-robot space missions, future heterogeneous robotic teams will increase efficiency via enhanced autonomy and parallelization, improve robustness via functional redundancy, as well as benefit from complementary capabilities of the individual robots. In this letter, we present our heterogeneous robotic team, consisting of flying and driving robots that we plan to deploy on scientific sampling demonstration missions at a Moon-analogue site on Mt. Etna, Sicily, Italy in 2021 as part of the ARCHES project. We describe the robots' individual capabilities and their roles in two mission scenarios. We then present components and experiments on important tasks therein: automated task planning, high-level mission control, spectral rock analysis, radio-based localization, collaborative multi-robot 6D SLAM in Moon-analogue and Mars-like scenarios, and demonstrations of autonomous sample return
    corecore