4,993 research outputs found
Combination of a magnetic Feshbach resonance and an optical bound-to-bound transition
We use laser light near resonant with an optical bound-to-bound transition to
shift the magnetic field at which a Feshbach resonance occurs. We operate in a
regime of large detuning and large laser intensity. This reduces the
light-induced atom-loss rate by one order of magnitude compared to our previous
experiments [D.M. Bauer et al. Nature Phys. 5, 339 (2009)]. The experiments are
performed in an optical lattice and include high-resolution spectroscopy of
excited molecular states, reported here. In addition, we give a detailed
account of a theoretical model that describes our experimental data
Effect of Pauli repulsion and transfer on fusion
The effect of the Pauli exclusion principle on the nucleus-nucleus bare
potential is studied using a new density-constrained extension of the
Frozen-Hartree-Fock (DCFHF) technique. The resulting potentials exhibit a
repulsion at short distance. The charge product dependence of this Pauli
repulsion is investigated. Dynamical effects are then included in the potential
with the density-constrained time-dependent Hartree-Fock (DCTDHF) method. In
particular, isovector contributions to this potential are used to investigate
the role of transfer on fusion, resulting in a lowering of the inner part of
the potential for systems with positive Q-value transfer channels.Comment: Proceedings of an invited talk given at FUSION17, Hobart, Tasmania,
AU (20-24 February, 2017
A Methodology to Engineer and Validate Dynamic Multi-level Multi-agent Based Simulations
This article proposes a methodology to model and simulate complex systems,
based on IRM4MLS, a generic agent-based meta-model able to deal with
multi-level systems. This methodology permits the engineering of dynamic
multi-level agent-based models, to represent complex systems over several
scales and domains of interest. Its goal is to simulate a phenomenon using
dynamically the lightest representation to save computer resources without loss
of information. This methodology is based on two mechanisms: (1) the activation
or deactivation of agents representing different domain parts of the same
phenomenon and (2) the aggregation or disaggregation of agents representing the
same phenomenon at different scales.Comment: Presented at 3th International Workshop on Multi-Agent Based
Simulation, Valencia, Spain, 5th June 201
Near-field and far-field analysis of an azimuthally polarized slow Bloch mode microlaser
We report on the near- and far-field investigation of the slow Bloch modes associated with the G point of the Brillouin zone, for a honeycomb lattice photonic crystal, using near-field scanning optical microscopy (NSOM) and infra-red CCD camera. The array of doughnut-shaped monopolar mode (mode M) inside each unit cell, predicted previously by numerical simulation, is experimentally observed in the near-field by means of a metal-coated NSOM tip. In far-field, we detect the azimuthal polarization of the doughnut laser beam due to destructive and constructive interference of the mode radiating from the surface (mode TEM01*). A divergence of 2° for the laser beam and a mode size of (12.8 ± 1) μm for the slow Bloch mode at the surface of the crystal are also estimated. © 2010 Optical Society of America
Imaging and Treatment of Patients with Acute Stroke: An Evidence-Based Review
Evidence-based medicine has emerged as a valuable tool to guide clinical decision-making, by summarizing the best possible evidence for both diagnostic and treatment strategies. Imaging plays a critical role in the evaluation and treatment of patients with acute ischemic stroke, especially those who are being considered for thrombolytic or endovascular therapy. Time from stroke-symptom onset to treatment is a strong predictor of long-term functional outcome after stroke. Therefore, imaging and treatment decisions must occur rapidly in this setting, while minimizing unnecessary delays in treatment. The aim of this review was to summarize the best available evidence for the diagnostic and therapeutic management of patients with acute ischemic stroke
Synthesis of Single Phase Hg-1223 High Tc Superconducting Films With Multistep Electrolytic Process
We report the multistep electrolytic process for the synthesis of high Tc
single phase HgBa2Ca2Cu3O8+ (Hg-1223) superconducting films. The
process includes : i) deposition of BaCaCu precursor alloy, ii) oxidation of
BaCaCu films, iii) electrolytic intercalation of Hg in precursor BaCaCuO films
and iv) electrochemical oxidation and annealing of Hg-intercalated BaCaCuO
films to convert into Hg1Ba2Ca2Cu3O8+ (Hg-1223). Films were
characterized by thermo-gravimetric analysis (TGA) and differential thermal
analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM).
The electrolytic intercalation of Hg in BaCaCuO precursor is proved to be a
novel alternative to high temperature-high pressure mercuration process. The
films are single phase Hg-1223 with Tc = 121.5 K and Jc = 4.3 x 104 A/cm2.Comment: 17 Pages, 10 Figures. Submitted to Superconductor Science and
Technolog
Deep Memory Networks for Attitude Identification
We consider the task of identifying attitudes towards a given set of entities
from text. Conventionally, this task is decomposed into two separate subtasks:
target detection that identifies whether each entity is mentioned in the text,
either explicitly or implicitly, and polarity classification that classifies
the exact sentiment towards an identified entity (the target) into positive,
negative, or neutral.
Instead, we show that attitude identification can be solved with an
end-to-end machine learning architecture, in which the two subtasks are
interleaved by a deep memory network. In this way, signals produced in target
detection provide clues for polarity classification, and reversely, the
predicted polarity provides feedback to the identification of targets.
Moreover, the treatments for the set of targets also influence each other --
the learned representations may share the same semantics for some targets but
vary for others. The proposed deep memory network, the AttNet, outperforms
methods that do not consider the interactions between the subtasks or those
among the targets, including conventional machine learning methods and the
state-of-the-art deep learning models.Comment: Accepted to WSDM'1
Pharmacological and Toxicological Properties of the Potent Oral γ-Secretase Modulator BPN-15606.
Alzheimer's disease (AD) is characterized neuropathologically by an abundance of 1) neuritic plaques, which are primarily composed of a fibrillar 42-amino-acid amyloid-β peptide (Aβ), as well as 2) neurofibrillary tangles composed of aggregates of hyperphosporylated tau. Elevations in the concentrations of the Aβ42 peptide in the brain, as a result of either increased production or decreased clearance, are postulated to initiate and drive the AD pathologic process. We initially introduced a novel class of bridged aromatics referred tγ-secretase modulatoro as γ-secretase modulators that inhibited the production of the Aβ42 peptide and to a lesser degree the Aβ40 peptide while concomitantly increasing the production of the carboxyl-truncated Aβ38 and Aβ37 peptides. These modulators potently lower Aβ42 levels without inhibiting the γ-secretase-mediated proteolysis of Notch or causing accumulation of carboxyl-terminal fragments of APP. In this study, we report a large number of pharmacological studies and early assessment of toxicology characterizing a highly potent γ-secretase modulator (GSM), (S)-N-(1-(4-fluorophenyl)ethyl)-6-(6-methoxy-5-(4-methyl-1H-imidazol-1-yl)pyridin-2-yl)-4-methylpyridazin-3-amine (BPN-15606). BPN-15606 displayed the ability to significantly lower Aβ42 levels in the central nervous system of rats and mice at doses as low as 5-10 mg/kg, significantly reduce Aβ neuritic plaque load in an AD transgenic mouse model, and significantly reduce levels of insoluble Aβ42 and pThr181 tau in a three-dimensional human neural cell culture model. Results from repeat-dose toxicity studies in rats and dose escalation/repeat-dose toxicity studies in nonhuman primates have designated this GSM for 28-day Investigational New Drug-enabling good laboratory practice studies and positioned it as a candidate for human clinical trials
- …