3 research outputs found

    Structure-Property Optimization of a Series of Imidazopyridines for Visceral Leishmaniasis

    Get PDF
    Leishmaniasis is a collection of diseases caused by more than 20 Leishmania parasite species that manifest as either visceral, cutaneous, or mucocutaneous leishmaniasis. Despite the significant mortality and morbidity associated with leishmaniasis, it remains a neglected tropical disease. Existing treatments have variable efficacy, significant toxicity, rising resistance, and limited oral bioavailability, which necessitates the development of novel and affordable therapeutics. Here, we report on the continued optimization of a series of imidazopyridines for visceral leishmaniasis and a scaffold hop to a series of substituted 2-(pyridin-2-yl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazoles with improved absorption, distribution, metabolism, and elimination properties

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
    corecore