112 research outputs found

    Hole Hopping Across a Protein-Protein Interface.

    Get PDF
    We have investigated photoinduced hole hopping in a Pseudomonas aeruginosa azurin mutant Re126WWCuI, where two adjacent tryptophan residues (W124 and W122) are inserted between the CuI center and a Re photosensitizer coordinated to a H126 imidazole (Re = ReI(H126)(CO)3(dmp)+, dmp = 4,7-dimethyl-1,10-phenanthroline). Optical excitation of this mutant in aqueous media (//(CuII)' back ET that occurs over 12 Å, in contrast to the 23 Å, 120 us step in Re126WWCuI. Importantly, dimerization makes Re126FWCuI photoreactive and, in the case of {Re126WWCuI}2, channels the photoproduced "hole" to the molecule that was not initially photoexcited, thereby shortening the lifetime of ReI(H126)(CO)3(dmp•-)//CuII. Whereas two adjacent W124 and W122 indoles dramatically enhance CuI->*Re intramolecular multistep ET, the tryptophan quadruplex in {Re126WWCuI}2 does not accelerate intermolecular electron transport; instead, it acts as a hole storage and crossover unit between inter- and intramolecular ET pathways. Irradiation of {Re126WWCuII}2 or {Re126FWCuII}2 also triggers intermolecular *Re////(W122•+)' intermolecular charge recombination. Our findings shed light on the factors that control interfacial hole/electron hopping in protein complexes and on the role of aromatic amino acids in accelerating long-range electron transport

    Diagnostic relevance of spatial orientation for vascular dementia: A case study

    Get PDF
    Background: Spatial orientation is emerging as an early and reliable cognitive biomarker of Alzheimer’s disease (AD) pathophysiology. However, no evidence exists as to whether spatial orientation is also affected in vascular dementia (VaD). Objective: To examine allocentric (map-based) and egocentric (viewpoint-based) spatial orientation in an early stage VaD case. Methods: A spatial test battery was administered following clinical and neuropsychological cognitive evaluation. Results: Despite the patient’s complaints, little evidence of episodic memory deficits were detected when cueing was provided to overcome executive dysfunction. Similarly, medial temporal lobe-mediated allocentric orientation was intact. By contrast, medial parietal-mediated egocentric orientation was impaired, despite normal performance on standard visuospatial tasks. Conclusion: To our knowledge, this is the first in-depth investigation of spatial orientation deficits in VaD. Isolated egocentric deficits were observed. This differs from AD orientation deficits which encompass both allocentric and egocentric orientation deficits. A combination of egocentric orientation and executive function tests could serve as a promising cognitive marker for VaD pathophysiology

    Two Tryptophans Are Better Than One in Accelerating Electron Flow through a Protein

    Get PDF
    We have constructed and structurally characterized a <i>Pseudomonas aeruginosa</i> azurin mutant <b>Re126WWCu<sup>I</sup></b>, where two adjacent tryptophan residues (W124 and W122, indole separation 3.6–4.1 Å) are inserted between the Cu<sup>I</sup> center and a Re photosensitizer coordinated to the imidazole of H126 (Re<sup>I</sup>(H126)­(CO)<sub>3</sub>(4,7-dimethyl-1,10-phenanthroline)<sup>+</sup>). Cu<sup>I</sup> oxidation by the photoexcited Re label (*Re) 22.9 Å away proceeds with a ∼70 ns time constant, similar to that of a single-tryptophan mutant (∼40 ns) with a 19.4 Å Re–Cu distance. Time-resolved spectroscopy (luminescence, visible and IR absorption) revealed two rapid reversible electron transfer steps, W124 → *Re (400–475 ps, <i>K</i><sub>1</sub> ≅ 3.5–4) and W122 → W124<sup>•+</sup> (7–9 ns, <i>K</i><sub>2</sub> ≅ 0.55–0.75), followed by a rate-determining (70–90 ns) Cu<sup>I</sup> oxidation by W122<sup>•+</sup> ca. 11 Å away. The photocycle is completed by 120 μs recombination. No photochemical Cu<sup>I</sup> oxidation was observed in <b>Re126FWCu<sup>I</sup></b>, whereas in <b>Re126WFCu<sup>I</sup></b>, the photocycle is restricted to the ReH126W124 unit and Cu<sup>I</sup> remains isolated. QM/MM/MD simulations of <b>Re126WWCu<sup>I</sup></b> indicate that indole solvation changes through the hopping process and W124 → *Re electron transfer is accompanied by water fluctuations that tighten W124 solvation. Our finding that multistep tunneling (hopping) confers a ∼9000-fold advantage over single-step tunneling in the double-tryptophan protein supports the proposal that hole-hopping through tryptophan/tyrosine chains protects enzymes from oxidative damage

    Heterostructures for Optical Devices

    Get PDF
    Contains research objectives and reports on eight research projects.Joint Services Electronics Program (Contract DAAL03-86-K-0002)Joint Services Electronics Program (Contract DAALO3-89-C-0001)National Science Foundation (Grant EET 87-03404)Charles Stark Draper Laboratory (Contract DL-H-315251)Xerox Corporation FellowshipMIT Fund

    Heterostructures for High Performance Devices

    Get PDF
    Contains an introduction, reports on thirteen research projects and a list of publications.Charles S. Draper Laboratory Contract DL-H-418483DARPA/NCIPT Subcontract 542383Joint Services Electronics Program Contract DAAL03-89-C-0001IBM Corporation FellowshipNational Science Foundation FellowshipVitesse SemiconductorAT&T Bell LaboratoriesHertz Foundation FellowshipNational Science FoundationTRWBelgian American Education Foundation (BAEF) FellowshipNational Science Foundation Grant ECS 90-08485Harvard University. Division of Applied PhysicsAT&T Bell Laboratories FellowshipNational Science Foundation Grant ECS 90-0774

    Heterostructures for High Performance Devices

    Get PDF
    Contains an introduction and reports on ten research projects.Charles S. Draper Laboratory, Contract DL-H-315251Joint Services Electronics Program, Contract DAAL03-89-C-0001National Science Foundation Grant, Grant EET 87-03404MIT FundsInternational Business Machines CorporationNational Science Foundation Grant ECS 84-1317

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom

    Heterostructures for High Performance Devices

    Get PDF
    Contains table of contents for Part I, table of contents for Section 1, an introduction, reports on eighteen research projects and a list of publications.Charles S. Draper Laboratories Contract DL-H-418483DARPA/NCIPTJoint Services Electronics Program Contract DAAL03-89-C-0001Joint Services Electronics Program Contract DAAL03-92-C-0001IBM Corporation FellowshipNational Science Foundation FellowshipVitesse SemiconductorGTE LaboratoriesCharles S. Draper LaboratoriesElectronics and Telecommunications Research Institute (ETRI) FellowshipNational Science Foundation/Northeastern UniversityTRW SystemsU.S. Army Research OfficeNational Science FoundationAT&T Bell Laboratories FellowshipNational Science Foundation Grant ECS 90-0774
    • …
    corecore