91 research outputs found

    Putative antimicrobial peptides within bacterial proteomes affect bacterial predominance: a network analysis perspective

    Get PDF
    The predominance of bacterial taxa in the gut, was examined in view of the putative antimicrobial peptide sequences (AMPs) within their proteomes. The working assumption was that compatible bacteria would share homology and thus immunity to their putative AMPs, while competing taxa would have dissimilarities in their proteome-hidden AMPs. A network–based method (“Bacterial Wars”) was developed to handle sequence similarities of predicted AMPs among UniProt-derived protein sequences from different bacterial taxa, while a resulting parameter (“Die” score) suggested which taxa would prevail in a defined microbiome. T he working hypothesis was examined by correlating the calculated Die scores, to the abundance of bacterial taxa from gut microbiomes from different states of health and disease. Eleven publicly available 16S rRNA datasets and a dataset from a full shotgun metagenomics served for the analysis. The overall conclusion was that AMPs encrypted within bacterial proteomes affected the predominance of bacterial taxa in chemospheres

    Secretome of Undifferentiated Neural Progenitor Cells Induces Histological and Motor Improvements in a Rat Model of Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) is a progressive neurodegenerative movement disorder that results from the death of dopamine (DA) neurons. Over recent years, differentiated or undifferentiated neural stem cells (NSCs) transplantation has been widely used as a means of cell replacement therapy. However, compelling evidence has brought attention to the array of bioactive molecules produced by stem cells, defined as secretome. As described in the literature, other cell populations have a high-neurotrophic activity, but little is known about NSCs. Moreover, the exploration of the stem cell secretome is only in its initial stages, particularly as applied to neurodegenerative diseases. Thus, we have characterized the secretome of human neural progenitor cells (hNPCs) through proteomic analysis and investigated its effects in a 6-hydroxidopamine (6-OHDA) rat model of PD in comparison with undifferentiated hNPCs transplantation. Results revealed that the injection of hNPCs secretome potentiated the histological recovery of DA neurons when compared to the untreated group 6-OHDA and those transplanted with cells (hNPCs), thereby supporting the functional motor amelioration of 6-OHDA PD animals. Additionally, hNPCs secretome proteomic characterization has revealed that these cells have the capacity to secrete a wide range of important molecules with neuroregulatory actions, which are most likely support the effects observed. Overall, we have concluded that the use of hNPCs secretome partially modulate DA neurons cell survival and ameliorate PD animals' motor deficits, disclosing improved results when compared to cell transplantation approaches, indicating that the secretome itself could represent a route for new therapeutic options for PD regenerative medicine. Stem Cells Translational Medicine 2018;7:829-838.Portuguese Foundation for Science and Technology: Ciência 2007 Program and IF Development Grant (IF/00111/2013) to A.J.S., Ph.D. scholarships to S.I.A. (SFRH/BD/81495/ 2011); Canada Research Chair in Biomedical Engineering (LAB). This article has been developed under the scope of the project NORTE‐01‐0145‐FEDER‐000013 and NORTE‐01‐0145‐FEDER‐000023, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). This work has been funded by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the projects POCI‐01‐0145‐FEDER‐007038, PTDC/NEU‐NMC/0205/2012, UID/NEU/04539/2013, and POCI‐01‐0145‐FEDER‐007440 cofunded by the Programa Operacional Factores de Competitividade, QREN, the European Union (FEDER), and by the National Mass Spectrometry Network under the contract REDE/1506/REM/2005info:eu-repo/semantics/publishedVersio

    Mitochondrial Redox Metabolism in Trypanosomatids Is Independent of Tryparedoxin Activity

    Get PDF
    Tryparedoxins (TXNs) are oxidoreductases unique to trypanosomatids (including Leishmania and Trypanosoma parasites) that transfer reducing equivalents from trypanothione, the major thiol in these organisms, to sulfur-dependent peroxidases and other dithiol proteins. The existence of a TXN within the mitochondrion of trypanosomatids, capable of driving crucial redox pathways, is considered a requisite for normal parasite metabolism. Here this concept is shown not to apply to Leishmania. First, removal of the Leishmania infantum mitochondrial TXN (LiTXN2) by gene-targeting, had no significant effect on parasite survival, even in the context of an animal infection. Second, evidence is presented that no other TXN is capable of replacing LiTXN2. In fact, although a candidate substitute for LiTXN2 (LiTXN3) was found in the genome of L. infantum, this was shown in biochemical assays to be poorly reduced by trypanothione and to be unable to reduce sulfur-containing peroxidases. Definitive conclusion that LiTXN3 cannot directly reduce proteins located within inner mitochondrial compartments was provided by analysis of its subcellular localization and membrane topology, which revealed that LiTXN3 is a tail-anchored (TA) mitochondrial outer membrane protein presenting, as characteristic of TA proteins, its N-terminal end (containing the redox-active domain) exposed to the cytosol. This manuscript further proposes the separation of trypanosomatid TXN sequences into two classes and this is supported by phylogenetic analysis: i) class I, encoding active TXNs, and ii) class II, coding for TA proteins unlikely to function as TXNs. Trypanosoma possess only two TXNs, one belonging to class I (which is cytosolic) and the other to class II. Thus, as demonstrated for Leishmania, the mitochondrial redox metabolism in Trypanosoma may also be independent of TXN activity. The major implication of these findings is that mitochondrial functions previously thought to depend on the provision of electrons by a TXN enzyme must proceed differently

    The logic of kinetic regulation in the thioredoxin system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The thioredoxin system consisting of NADP(H), thioredoxin reductase and thioredoxin provides reducing equivalents to a large and diverse array of cellular processes. Despite a great deal of information on the kinetics of individual thioredoxin-dependent reactions, the kinetic regulation of this system as an integrated whole is not known. We address this by using kinetic modeling to identify and describe kinetic behavioral motifs found within the system.</p> <p>Results</p> <p>Analysis of a realistic computational model of the <it>Escherichia coli </it>thioredoxin system revealed several modes of kinetic regulation in the system. In keeping with published findings, the model showed that thioredoxin-dependent reactions were adaptable (i.e. changes to the thioredoxin system affected the kinetic profiles of these reactions). Further and in contrast to other systems-level descriptions, analysis of the model showed that apparently unrelated thioredoxin oxidation reactions can affect each other via their combined effects on the thioredoxin redox cycle. However, the scale of these effects depended on the kinetics of the individual thioredoxin oxidation reactions with some reactions more sensitive to changes in the thioredoxin cycle and others, such as the Tpx-dependent reduction of hydrogen peroxide, less sensitive to these changes. The coupling of the thioredoxin and Tpx redox cycles also allowed for ultrasensitive changes in the thioredoxin concentration in response to changes in the thioredoxin reductase concentration. We were able to describe the kinetic mechanisms underlying these behaviors precisely with analytical solutions and core models.</p> <p>Conclusions</p> <p>Using kinetic modeling we have revealed the logic that underlies the functional organization and kinetic behavior of the thioredoxin system. The thioredoxin redox cycle and associated reactions allows for a system that is adaptable, interconnected and able to display differential sensitivities to changes in this redox cycle. This work provides a theoretical, systems-biological basis for an experimental analysis of the thioredoxin system and its associated reactions.</p

    Probing Conformational Dynamics by Protein Contact Networks: Comparison with NMR Relaxation Studies and Molecular Dynamics Simulations

    No full text
    Protein contact networks (PCNs) have been used for the study of protein structure and function for the past decade. In PCNs, each amino acid is considered as a node while the contacts among amino acids are the links/edges. We examined the possible correlation between the closeness centrality measure of amino acids within PCNs and their mobility as known from NMR spin relaxation experiments and molecular dynamic (MD) simulations. The pivotal observation was that plasticity within a protein stretch correlated inversely to closeness centrality. Effects on protein conformational plasticity caused by the formation of disulfide bonds or protein–protein interactions were also identified by the PCN analysis measure closeness centrality and the hereby introduced percentage of closeness centrality perturbation (% CCP). All the comparisons between PCN measures, NMR data, and MDs were performed in a set of proteins of different biological functions and structures: the core protease domain of anthrax lethal factor, the N-terminal RING domain of E3 Ub ligase Arkadia, the reduced and oxidized forms of human thioredoxin 1, and the ubiquitin molecules (Ub) of the catalytic Ub–RING–E3–E2–Ub complex of E3 ligase Ark2.The graph theory analysis of PCNs could thus provide a general method for assessing the conformational dynamics of free proteins and putative plasticity changes between different protein forms (apo/complexed or reduced/oxidized)

    Identification of the zinc, copper and cadmium metalloproteome of the protozoon Tetrahymena thermophila by systematic bioinformatics

    No full text
    Tetrahymena thermophila (T. thermophila) is a ciliated protozoon that can detect freshwater pollution by heavy metals (“whole-cell biosensor”). This work employed a systematic bioinformatics approach to predict and analyze the metalloproteome of T. thermophila for the essential Zn, Cu and the non-essential Cd. 3784 metal-binding proteins were identified compared to the 456 annotated so far in UniProt. The localization, functional classification, and the functionally enriched network of the newly identified metalloproteome are presented. Cd toxicity could be explained in terms of the metal replacing Cu and especially Zn in MAPKs, transporters and antioxidant enzymes. The predicted results for Cd toxicity and responses reflect those observed experimentally in different organisms after their exposure to Cd. © 2017, Springer-Verlag Berlin Heidelberg

    The -Cys-X1-X2-Cys- Motif of Reduced Glutaredoxins Adopts a Consensus Structure That Explains the Low p<i>K</i><sub>a</sub> of Its Catalytic Cysteine

    No full text
    The -Cys-X1-X2-Cys- active site motif is central to the function of enzymes of the thioredoxin superfamily, including glutaredoxins. Their chemistry depends on the lowered p<i>K</i><sub>a</sub> of the N-terminal thiolate cysteine of the -Cys-X1-X2-Cys- sequence; therefore its structure, dynamics, and electrostatics matter. Much information about the glutaredoxin structures was obtained by nuclear magnetic resonance (NMR), yet these various NMR structures produced heterogeneous and discordant views of the -Cys-X1-X2-Cys- motifs. This study addresses these inconsistencies by a computational and experimental investigation of three diverse reduced -Cys-X1-X2-Cys- motifs, from human glutaredoxin 1 (hGrx1), <i>Escherichia coli</i> glutaredoxin 2 (EcGrx2), and T4 virus glutaredoxin (T4Grx). The NMR models do not account for the low p<i>K</i><sub>a</sub> of the N-terminal cysteine. However, extensive investigations of the NMR conformers by simulations yielded consensus structures for the -Cys-X1-X2-Cys- motif, with well-defined orientations for the cysteines. p<i>K</i><sub>a</sub> calculations indicated that the consensus structure stabilizes the thiolate by local hydrogen bonds. The consensus structures of EcGrx2 and T4Grx formed the basis for predicting low p<i>K</i><sub>a</sub> values for their N-terminal cysteines. Subsequent experimental titrations showed that these p<i>K</i><sub>a</sub> values are <5, supporting the validity of the consensus structure. The simulations also revisited the conformational dynamics of side chains around the -Cys-X1-X2-Cys- motif, which allowed reconciliation of calculated and measured p<i>K</i><sub>a</sub> values for important hGrx1 mutants. The conformational spread of these side chains, which differs between NMR and molecular dynamics models, is likely to be relevant to substrate recognition. The new structural models determined in this work should prove to be valuable in future molecular studies of the glutaredoxins
    corecore