3 research outputs found

    Free electron laser with terahertz band Bragg reflectors

    No full text
    Periodical Bragg structures may be considered as an effective way of controlling the electromagnetic energy fluxes and provision of spatially coherent radiation in the free electron lasers with oversized interaction space. A new scheme of terahertz band FEL with hybrid Bragg resonator is proposed consisting of advanced input Bragg mirror and traditional output Bragg mirror. An advanced Bragg mirror exploiting the coupling between the two counterpropagating modes and the quasicutoff one provides mode selection over the transverse index. The main amplification of the wave by the electron beam takes place in the regular section of the resonator. Small reflections from the output traditional Bragg mirror are sufficient for oscillator self-excitation

    Planar Bragg Reflectors for Frequency-Tunable Sub-Terahertz Gyrotrons

    No full text
    A novel concept of a frequency-tuned sub-terahertz gyrotron based on a combination of an irregular low-frequency resonator and an external reflector has been proposed recently. A simulation was carried out for a fundamental-cyclotron-harmonic gyrotron that demonstrates the possibility of achieving high (10–30%) efficiencies in a wide (~10%) frequency range. A possible solution to the problem of narrow-band frequency-tunable external reflectors in the form of so-called modified planar Bragg structures is discussed. The manufacturing of such structures on the basis of a novel additive technology based on photopolymer 3D printing, as well as the results of “cold” experiments of the manufactured samples, are described in the paper
    corecore