4 research outputs found
Detailing the Pore Structure of Productive Intervals of Oil Wells Using the Color 3D Imaging
The article describes an approach to expanding the methodology for applying hydraulic fracturing in oil fields by adding the possibilities of 3D modeling with color imaging of the pore structure of the productive intervals of wells. As an applied example, the geological and geophysical section of the productive level of one of the wells of the Moscudinskoye oil field, with known data on the integrated interpretation of the results of well-logging and microcomputer tomography, was chosen. According to well-logging data, the productive reservoir in the analyzed section of the section is characterized by a high degree of heterogeneity. Tomographic studies of a full-size core made it possible to identify four lithotypes here with different pore structure features. Accounting for the identified reservoir heterogeneity, as well as data on the thickness and other characteristics of reservoir properties of individual lithotypes that make up the section, made it possible to significantly increase the detail of the final geological model of the wellbore section. A distinctive feature of this final geological model is the use of the method of enlargement of the initial data array by adding intermediate values that were calculated theoretically. The visibility of the final geological model of the borehole walls is provided by color 3D imaging of the calculated data of the enlarged massif and makes it possible to judge the presence of areas with good and weak fluid conductivity on the lateral surface of the borehole walls. According to this model, intrastratal transverse and longitudinal fluid-conducting “corridors” are observed in the circumwell zone that determine the hydro-dynamic movements of natural and artificial fluids in the space of productive reservoirs
Detailing the Pore Structure of Productive Intervals of Oil Wells Using the Color 3D Imaging
The article describes an approach to expanding the methodology for applying hydraulic fracturing in oil fields by adding the possibilities of 3D modeling with color imaging of the pore structure of the productive intervals of wells. As an applied example, the geological and geophysical section of the productive level of one of the wells of the Moscudinskoye oil field, with known data on the integrated interpretation of the results of well-logging and microcomputer tomography, was chosen. According to well-logging data, the productive reservoir in the analyzed section of the section is characterized by a high degree of heterogeneity. Tomographic studies of a full-size core made it possible to identify four lithotypes here with different pore structure features. Accounting for the identified reservoir heterogeneity, as well as data on the thickness and other characteristics of reservoir properties of individual lithotypes that make up the section, made it possible to significantly increase the detail of the final geological model of the wellbore section. A distinctive feature of this final geological model is the use of the method of enlargement of the initial data array by adding intermediate values that were calculated theoretically. The visibility of the final geological model of the borehole walls is provided by color 3D imaging of the calculated data of the enlarged massif and makes it possible to judge the presence of areas with good and weak fluid conductivity on the lateral surface of the borehole walls. According to this model, intrastratal transverse and longitudinal fluid-conducting âcorridorsâ are observed in the circumwell zone that determine the hydro-dynamic movements of natural and artificial fluids in the space of productive reservoirs
Enhancing the Catalytic Activity of Mo(110) Surface via Its Alloying with Submonolayer to Multilayer Boron Films and Oxidation of the Alloy: A Case of (CO + O<sub>2</sub>) to CO<sub>2</sub> Conversion
In-situ formation of boron thin films on the Mo(110) surface, as well as the formation of the molybdenum boride and its oxide and the trends of carbon monoxide catalytic oxidation on the substrates formed, have been studied in an ultra-high vacuum (UHV) by a set of surface-sensitive characterization techniques: Auger and X-ray photoelectron spectroscopy (AES, XPS), low-energy ion scattering (LEIS), reflection-absorption infrared spectroscopy (RAIRS), temperature-programmed desorption (TPD), electron energy loss spectroscopy (EELS) and work function measurements using the Anderson method. The boron deposited at Mo(110) via electron-beam deposition at a substrate temperature of 300 K grows as a 2D layer, at least in submonolayer coverage. Such a film is bound to the Mo(110) via polarized chemisorption bonds, dramatically changing the charge density at the substrate surface manifested by the Mo(110) surface plasmon damping. Upon annealing of the B-Mo(110) system, the boron diffuses into the Mo(110) bulk following a two-mode regime: (1) quite easy dissolution, starting at a temperature of about 450 K with an activation energy of 0.4 eV; and (2) formation of molybdenum boride at a temperature higher than 700 K with M-B interatomic bonding energy of 3.8 eV. The feature of the formed molybdenum boride is that there is quite notable carbon monoxide oxidation activity on its surface. A further dramatic increase of such an activity is achieved when the molybdenum boride is oxidized. The latter is attributed to more activated states of molecular orbitals of coadsorbed carbon monoxide and oxygen due to their enhanced interaction with both boron and oxygen species for MoxByOz ternary compound, compared to only boron for the MoxâByâ double alloy
Preparation of AluminumâMolybdenum Alloy Thin Film Oxide and Study of Molecular CO + NO Conversion on Its Surface
Adsorption and interaction of carbon monoxide (CO) and nitric oxide (NO) molecules on the surface of bare Al-Mo(110) system and on that obtained by its in situ oxidation have been studied in ultra-high vacuum (base pressure: ca. 10â8 Pa) by means of Auger and X-ray photoelectron spectroscopy (AES, XPS), low energy electron diffraction (LEED), reflectionâabsorption infrared and thermal desorption spectroscopy (RAIRS, TDS), and by the work function measurements. In order to achieve the Al-Mo(110) alloy the thin aluminum film of a few monolayers thick was in situ deposited onto the Mo(110) crystal and then annealed at 800 K. As a result of Al atoms diffusion into the Mo(110) subsurface region and the chemical reaction, the surface alloy of a hexagonal atomic symmetry corresponding to Al2Mo alloy is formed. The feature of thus formed surface alloy regarding molecular adsorption is that, unlike the bare Mo(110) and Al(111) substrates, on which both CO and NO dissociate, adsorption on the alloy surface is non-dissociative. Moreover, adsorption of carbon monoxide dramatically changes the state of pre-adsorbed NO molecules, displacing them to higher-coordinated adsorption sites and simultaneously tilting their molecular axis closer to the surface plane. After annealing of this coadsorbed system up to 320 K the (CO + NO â CO2 + N) reaction takes place resulting in carbon dioxide desorption into the gas phase and nitriding of the substrate. Such an enhancement of catalytic activity of Mo(110) upon alloying with Al is attributed to surface reconstruction resulting in appearance of new adsorption/reaction centers at the Al/Mo interface (steric effect), as well as to the Mo d-band filling upon alloying (electronic effect). Catalytic activity mounts further when the Al-Mo(110) is in situ oxidized. The obtained Al-Mo(110)-O ternary system is a prototype of a metal/oxide model catalysts featuring the metal oxides and the metal/oxide perimeter interfaces as a the most active reaction sites. As such, this type of low-cost metal alloy oxide models precious metal containing catalysts and can be viewed as a potential substitute to them