5 research outputs found

    Hybrid Internal Combustion Engine Based Auxiliary Power Unit

    No full text
    The brief presents some principles of the ON/OFF operational strategy applied to energy management of a hybrid internal combustion engine (ICE) based auxiliary power unit (APU). It is shown that significant reduction of fuel consumption (78% for the example system presented) and maintenance expenses (80% operation time decrease was attained by the system) may be achieved by such a strategy, shifting the system operation point towards corresponding optimal region. The side effect of aggravated amount of starting events is cured by employing an actively balanced supercapacitor (SC)-based emergency starter (SCS). The SCS operates as short-time energy storage device, charging from the battery at a low rate and then providing a current burst required for proper internal combustion engine starting. Current sensorless method of automatic connection (based on bus voltage sensing) and disconnection (based on sensing the voltage across bidirectional MOSFET-based switch) of the SCS is also proposed. The proposed circuitry, successfully validated by experiments, may be arbitrarily scaled up or down according to application rating

    Baseline for Split DC Link Design in Three-Phase Three-Level Converters Operating with Unity Power Factor Based on Low-Frequency Partial Voltage Oscillations

    No full text
    The study sets a baseline for split DC link capacitance values and voltage set points in three-phase three-level AC/DC (or DC/AC) converters operating with unity power factor. In order to equalize the average values of partial DC link voltages, the controller generates a zero-sequence containing DC components only while employing neither dedicated DC link capacitance balancing hardware nor high-order zero-sequence component injection. Such a baseline is required in order to evaluate the effectiveness of different DC link capacitance reduction methods proposed in the literature. Unlike most previous works, utilizing neutral point current based on cumbersome analytical expressions to determine neutral point potential oscillations, the instantaneous power balance-based approach is employed in this paper, resulting in greatly simplified and more intuitive expressions. It is demonstrated that while the total DC link voltage is low-frequency ripple-free under unity power factor balanced AC-side operation, split DC link capacitors absorb triple-fundamental frequency power components with one-sixth load power magnitude. This yields significant opposite phase partial voltage ripples. In such a case, selection of DC link capacitances and voltage set points must take into account the expected values of AC-side phase voltage magnitude and split DC link capacitor voltage and current ratings. Simulation and experimental results validate the proposed methodology by application to a 10 kVA T-type converter prototype

    Baseline for Split DC Link Design in Three-Phase Three-Level Converters Operating with Unity Power Factor Based on Low-Frequency Partial Voltage Oscillations

    No full text
    The study sets a baseline for split DC link capacitance values and voltage set points in three-phase three-level AC/DC (or DC/AC) converters operating with unity power factor. In order to equalize the average values of partial DC link voltages, the controller generates a zero-sequence containing DC components only while employing neither dedicated DC link capacitance balancing hardware nor high-order zero-sequence component injection. Such a baseline is required in order to evaluate the effectiveness of different DC link capacitance reduction methods proposed in the literature. Unlike most previous works, utilizing neutral point current based on cumbersome analytical expressions to determine neutral point potential oscillations, the instantaneous power balance-based approach is employed in this paper, resulting in greatly simplified and more intuitive expressions. It is demonstrated that while the total DC link voltage is low-frequency ripple-free under unity power factor balanced AC-side operation, split DC link capacitors absorb triple-fundamental frequency power components with one-sixth load power magnitude. This yields significant opposite phase partial voltage ripples. In such a case, selection of DC link capacitances and voltage set points must take into account the expected values of AC-side phase voltage magnitude and split DC link capacitor voltage and current ratings. Simulation and experimental results validate the proposed methodology by application to a 10 kVA T-type converter prototype
    corecore