10 research outputs found

    The Influence of Climate Warming on the Hydrological Regime of Thermokarst Lakes in the Subarctic (Chukotka, Russia)

    Get PDF
    Using remote methods and materials for meteorological observations, climate changes and the area of 36 thermokarst lakes located in the Anadyr lowland in Chukotka over a 65-year period were analyzed. More than 20 lakes were studied by field methods. With an increase in the average annual air temperature by 1.8°C and an increase in the amount of annual precipitation by 135 mm, the total area of the lakes mirror decreased by 24%. Cryogenic processes have had a significant impact on the decrease in the water quantity of lakes. Thermal erosion in drainage channels has led to multiple discharges of water in abnormally warm years. The heaving of permafrost in the coastal zone affected the reduction of the lake catchment area. If the trends of climate change continue, further drainage of large lakes and an increase in the number of small sag pond is expected in the next 25 years

    ВОЗМОЖНОСТИ ОЦЕНИВАНИЯ БАССЕЙНОВОЙ ТРАНСПИРАЦИИ НА ОСНОВЕ ИЗМЕРЕНИЯ СТВОЛОВОГО СОКОДВИЖЕНИЯ: ПОСТАНОВКА ЗАДАЧИ

    Get PDF
    Study of seasonal dynamics and evapotranspiration volume of forested catchments (mainly forest stand transpiration) is the relevant objective for fundamental knowledge and practical applications. However, there are many difficulties: labor efforts of direct observations, many factors affecting against each other, observational data scaling and so on. As a result, evapotranspiration during hydrological modeling is determined by the leftover principle and simplified techniques, leading to wrong representation of water balance structure. The presented article deals with the first results of our research group focused on setting up field measurements of xylem sap flow using trunk sap flow measuring sensors as well as development of sap flow assessment methods for individual trees and whole catchment. The investigations were performed for mixed coniferous-broad leaved forests at the territory of the Central Sikhote-Alin’ within Verkhneussuriyskiy biogeocenotical station of FSC of the East Asia Terrestrial Biodiversity FEB RAS. This site is used for water balance measuring surveys from 2011. Sap flow was measured continuously during June-October of 2019 on one of the local dominant tree species. Apparently, such investigations are novel for the Russian Far East region. It is expected that direct sap flow measurements for individual trees refinement methods, data scaling and its integration to the hydrometeorological observations will help to make a comprehensive analysis of catchments water balance and to integrate measured data into hydrological models.Изучение сезонной динамики и объемов суммарного испарения лесных водосборов (главным образом транспирации древостоев) является актуальнейшей задачей как в фундаментальном, так и прикладном аспектах. Ее решение связано с рядом сложностей: трудоемкость прямого наблюдения, наличие большого количества влияющих друг на друга факторов, необходимость распространения данных точечных измерений на площадь и многие другие. Это приводит к тому, что при моделировании водного баланса речных бассейнов испарение определяется по упрощенным схемам, остаточному принципу, что ведет к неправильному отражению структуры водного баланса. Настоящая статья представляет первые результаты усилий инициативного коллектива исследователей, направленных на постановку экспериментальных измерений ксилемного потока с использованием современных датчиков стволового сокодвижения, а также развития методов оценки транспирации как отдельных деревьев, так и бассейновой транспирации на основе этих данных. Исследование проведено на территории смешанных хвойно-широколиственных лесов Центрального Сихотэ-Алиня в пределах экспериментального водосбора, входящего в состав Верхнеуссурийского биогеоценотического стационара ФНЦ Биоразнообразия ДВО РАН, на котором рабочей группой возобновлены воднобалансовые работы в 2011 г. и в настоящее время являются уже постоянными. Регистрация стволового сокодвижения выполнялась в период с июня по начало октября 2019 года на одном из доминантных видов местного растительного сообщества. В Дальневосточном регионе России работы такого плана, по-видимому, проведены впервые. Предполагается, что отработка методов оценки прямых измерений транспирации на уровне отдельных деревьев, попытка пространственной генерализации на территорию топологического масштаба и вовлечение полученной информации в комплекс гидрометеорологических наблюдений позволят выполнить исчерпывающий анализ водного баланса в пределах малого речного бассейна и интегрировать поток измеряемых данных по испарению в гидрологические модели. &nbsp

    The Effect of Atmospheric Pressure Variations on the Suprapermafrost Groundwater Level and Runoff of Small Rivers in the Anadyr Lowlands, Northeast Russia

    No full text
    The present-day models of the hydrological regime of soils and river basins do not include a hypothesis regarding the effect of atmospheric pressure on hydrological processes (baric effect), which is assumed negligible. However, their manifestations are likely, considering the mechanical and hydrophysical properties of shallow peat-bog soils (plasticity and elasticity, high moisture-retention capacity, the ability to swell and shrink) and the important role of undecomposed plant remains. The effect of atmospheric pressure variations on level changes in a suprapermafrost aquifer was detected using field and laboratory experiments in shallow peat and peaty tundra soils in the Anadyr Lowlands, Northeast Russia. One can see this effect in the runoff regime of 1st–4th orders streams. The manifestations of this phenomenon can differ, and in particular, they can be directed oppositely. The changes in the level and storage of suprapermafrost gravitational water could be caused only by synchronous (in phase opposition) changes in capillary water fringe above the groundwater table. To explain the observed phenomena, a conceptual model is developed based on the analysis of the balance of forces and water balance in a system of elastic capillaries. Not being complete and perfect, the model reproduces qualitatively the main observed cases of the response to air pressure changes, proving the effect itself, and suggests the likely localization of its mechanisms. A shallow suprapermafrost groundwater table in contact with the peat bottom, as well as incomplete (below the full moisture capacity) water saturation of peat soil horizons, appear to be circumstances of the baric effect on tundra shallow subsurface aquifers. Favorable conditions for the baric effect in a soil profile include a high elasticity of peat-soil matrix, high and variable values of porosity and water yield of peat and moss cover, and, at the catchment scale, a high proportion of coverage by these types of soils. A full-scale study of a mechanism of baric effect on a suprapermafrost tundra aquifer requires numerous laboratory and field experiments, that must be much better equipped than presented in our study. It is also welcomed alternative hypotheses regarding the aquifer water level response to changes in air pressure if the observed macroscopic effects at any alternative occurrence could be quite similar

    The Effect of Atmospheric Pressure Variations on the Suprapermafrost Groundwater Level and Runoff of Small Rivers in the Anadyr Lowlands, Northeast Russia

    No full text
    The present-day models of the hydrological regime of soils and river basins do not include a hypothesis regarding the effect of atmospheric pressure on hydrological processes (baric effect), which is assumed negligible. However, their manifestations are likely, considering the mechanical and hydrophysical properties of shallow peat-bog soils (plasticity and elasticity, high moisture-retention capacity, the ability to swell and shrink) and the important role of undecomposed plant remains. The effect of atmospheric pressure variations on level changes in a suprapermafrost aquifer was detected using field and laboratory experiments in shallow peat and peaty tundra soils in the Anadyr Lowlands, Northeast Russia. One can see this effect in the runoff regime of 1st–4th orders streams. The manifestations of this phenomenon can differ, and in particular, they can be directed oppositely. The changes in the level and storage of suprapermafrost gravitational water could be caused only by synchronous (in phase opposition) changes in capillary water fringe above the groundwater table. To explain the observed phenomena, a conceptual model is developed based on the analysis of the balance of forces and water balance in a system of elastic capillaries. Not being complete and perfect, the model reproduces qualitatively the main observed cases of the response to air pressure changes, proving the effect itself, and suggests the likely localization of its mechanisms. A shallow suprapermafrost groundwater table in contact with the peat bottom, as well as incomplete (below the full moisture capacity) water saturation of peat soil horizons, appear to be circumstances of the baric effect on tundra shallow subsurface aquifers. Favorable conditions for the baric effect in a soil profile include a high elasticity of peat-soil matrix, high and variable values of porosity and water yield of peat and moss cover, and, at the catchment scale, a high proportion of coverage by these types of soils. A full-scale study of a mechanism of baric effect on a suprapermafrost tundra aquifer requires numerous laboratory and field experiments, that must be much better equipped than presented in our study. It is also welcomed alternative hypotheses regarding the aquifer water level response to changes in air pressure if the observed macroscopic effects at any alternative occurrence could be quite similar
    corecore