12 research outputs found

    Beam interactions in one-dimensional saturable waveguide arrays

    Get PDF
    The interaction between two parallel beams in one-dimensional discrete saturable systems has been investigated using lithium niobate nonlinear waveguide arrays. When the beams are separated by one channel and in-phase it is possible to observe soliton fusion at low power levels. This new result is confirmed numerically. By increasing the power, soliton-like propagation of weakly-coupled beams occurs. When the beams are out-of-phase the most interesting result is the existence of oscillations which resemble the recently discovered Tamm oscillations.Comment: 5 pages, 6 figures, submitted to Phys. Rev.

    Dark and bright blocker soliton interaction in defocusing waveguide arrays

    Get PDF
    Abstract: We experimentally demonstrate the interaction of an optical probe beam with both bright and dark blocker solitons formed with low optical light power in a saturable defocusing waveguide array in photorefractive lithium niobate. A phase insensitive interaction of the beams is achieved by means of counterpropagating light waves. Partial and full reflection (blocking) of the probe beam on the positive or negative light-induced defect is obtained, respectively, in good agreement with numerical simulations

    Dark and bright blocker soliton interaction in defocusing waveguide arrays

    Get PDF
    We experimentally demonstrate the interaction of an optical probe beam with both bright and dark blocker solitons formed with low optical light power in a saturable defocusing waveguide array in photorefractive lithium niobate. A phase insensitive interaction of the beams is achieved by means of counterpropagating light waves. Partial and full reflection (blocking) of the probe beam on the positive or negative light-induced defect is obtained, respectively, in good agreement with numerical simulations

    Discrete diffraction and spatial gap solitons in photovoltaic LiNbO3 waveguide arrays

    Get PDF
    We investigate, experimentally and theoretically, light propagation in one-dimensional waveguide arrays exhibiting a saturable self-defocusing nonlinearity. We demonstrate low-intensity ā€œdiscrete diffractionā€, and the high-intensity formation of spatial gap solitons arising from the first band of the transmission spectrum. The waveguide arrays are fabricated by titanium in-diffusion in a photorefractive copper-doped lithium niobate crystal, and the optical nonlinearity arises from the bulk photovoltaic effect

    >

    No full text

    Reconfigurable optical channel waveguides in lithium niobate crystals produced by combination of low-dose O3+ ion implantation and selective white light illumination

    No full text
    We report on a new method to form reconfigurable channel waveguides in lithium niobate crystals, based on a combination of low-dose O3+ ion implantation and selective white light illumination. The fabricated structures show low loss as well as rather high resistivity against optical erasure with red or infrared light, while at the same time reconfiguration of the structures remains possible using homogeneous white light illumination. The transmission properties of the channel waveguide modes can be well simulated numerically by the beam propagation method, which allows for the fabrication of tailored optical interconnections. (c) 2008 Optical Society of America

    Interaction of counterpropagating discrete solitons in a nonlinear one-dimensional waveguide array

    No full text
    We experimentally investigate the interaction of counterpropagating discrete solitons in a one-dimensional waveguide array in photorefractive lithium niobate. While for low input powers only weak interaction and formation of counterpropagating vector solitons are observed, for higher input powers a growing instability results in discrete lateral shifting of the formed discrete solitons. Numerical modeling shows the existence of three different regimes: stable propagation of vector solitons at low power, instability for intermediate power levels leading to discrete shifting of the two discrete solitons, and an irregular temporal dynamic behavior of the two beams for high input power

    Formation and light guiding properties of dark solitons in one-dimensional waveguide arrays

    No full text
    We report on the formation of dark discrete solitons in a nonlinear periodic system consisting of evanescently coupled channel waveguides in defocusing lithium niobate. Localized nonlinear dark modes displaying a phase jump in the center that is located either on-channel (mode A) or in-between channels (mode B) are formed, which is to our knowledge the first experimental observation of mode B. By numerical simulations we find that the saturable nature of the nonlinearity is responsible for the improved stability of mode B. The ability of the induced refractive index structures to guide light of a low-power probe beam is demonstrated.Preprint available at: [https://arxiv.org/pdf/nlin/0607030.pdf

    Observation of staggered surface solitary waves in one-dimensional waveguide arrays

    No full text
    The observation of nonlinear staggered surface states at the interface between a substrate and a one-dimensional self-defocusing nonlinear waveguide array is reported. Launching of staggered input beams of different power in the first channel of the array results in formation of localized structures in different channels. Our experimental results are confirmed numerically
    corecore