15,382 research outputs found
Involutive Division Technique: Some Generalizations and Optimizations
In this paper, in addition to the earlier introduced involutive divisions, we
consider a new class of divisions induced by admissible monomial orderings. We
prove that these divisions are noetherian and constructive. Thereby each of
them allows one to compute an involutive Groebner basis of a polynomial ideal
by sequentially examining multiplicative reductions of nonmultiplicative
prolongations. We study dependence of involutive algorithms on the completion
ordering. Based on properties of particular involutive divisions two
computational optimizations are suggested. One of them consists in a special
choice of the completion ordering. Another optimization is related to
recomputing multiplicative and nonmultiplicative variables in the course of the
algorithm.Comment: 19 page
Gr\"obner Bases and Generation of Difference Schemes for Partial Differential Equations
In this paper we present an algorithmic approach to the generation of fully
conservative difference schemes for linear partial differential equations. The
approach is based on enlargement of the equations in their integral
conservation law form by extra integral relations between unknown functions and
their derivatives, and on discretization of the obtained system. The structure
of the discrete system depends on numerical approximation methods for the
integrals occurring in the enlarged system. As a result of the discretization,
a system of linear polynomial difference equations is derived for the unknown
functions and their partial derivatives. A difference scheme is constructed by
elimination of all the partial derivatives. The elimination can be achieved by
selecting a proper elimination ranking and by computing a Gr\"obner basis of
the linear difference ideal generated by the polynomials in the discrete
system. For these purposes we use the difference form of Janet-like Gr\"obner
bases and their implementation in Maple. As illustration of the described
methods and algorithms, we construct a number of difference schemes for Burgers
and Falkowich-Karman equations and discuss their numerical properties.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and
Applications) at http://www.emis.de/journals/SIGMA
- …