8 research outputs found

    Universal Oligonucleotide Microarray for Sub-Typing of Influenza A Virus

    Get PDF
    A universal microchip was developed for genotyping Influenza A viruses. It contains two sets of oligonucleotide probes allowing viruses to be classified by the subtypes of hemagglutinin (H1–H13, H15, H16) and neuraminidase (N1–N9). Additional sets of probes are used to detect H1N1 swine influenza viruses. Selection of probes was done in two steps. Initially, amino acid sequences specific to each subtype were identified, and then the most specific and representative oligonucleotide probes were selected. Overall, between 19 and 24 probes were used to identify each subtype of hemagglutinin (HA) and neuraminidase (NA). Genotyping included preparation of fluorescently labeled PCR amplicons of influenza virus cDNA and their hybridization to microarrays of specific oligonucleotide probes. Out of 40 samples tested, 36 unambiguously identified HA and NA subtypes of Influenza A virus

    A New Method for the Synthesis of 3-Thiocyanatopyrazolo[1,5-a]pyrimidines

    No full text
    In this article, we demonstrate how an original effective “metal-free” and “chromatography-free” route for the synthesis of 3-thiocyanatopyrazolo[1,5-a]pyrimidines has been developed. It is based on electrooxidative (anodic) C–H thiocyanation of 5-aminopyrazoles by thiocyanate ion leading to 4-thiocyanato-5-aminopyrazoles (stage 1, yields up to 87%) following by their chemical condensation with 1,3-dicarbonyl compounds or their derivatives (stage 2, yields up to 96%). This method is equally effective for the synthesis of 3-thiocyanatopyrazolo[1,5-a]pyrimidines, both without substituents and with various donor (acceptor) substituents in the pyrimidine ring

    Rashba Spin Splitting in HgCdTe Quantum Wells with Inverted and Normal Band Structures

    No full text
    In quantum wells (QWs) formed in HgCdTe/CdHgTe heterosystems with a variable composition of Cd(Hg), Shubnikov-de-Haas (SdH) oscillations are investigated to characterize the Rashba-type spin-orbit coupling in QWs with both a normal and inverted band structure. Several methods of extracting the Rashba spin-splitting at zero magnetic field and their magnetic field dependences from the beatings of SdH oscillations are used for greater reliability. The large and similar Rashba splitting (25–27 meV) is found for different kinds of spectrum, explained by a significant fraction of the p-type wave functions, in both the E1 subband of the sample with a normal spectrum and the H1 subband for the sample with an inverted one

    Activation material selection for multiple foil activation detectors in JET TT campaign

    No full text
    In the preparation for the Deuterium-Tritium campaign, JET will operate with a tritium plasma. The T + T reaction consists of two notable channels: (1) T + T -> He-4 + 2n, (2) T + T -> He-5 + n -> He-4 + 2n. The reaction channel (1) is the reaction with the highest branching ratio and a continuum of neutron energies being produced. Reaction channel (2) produces a spectrum with a peak at 8.8 MeV. A particular problem is the ratio between the individual TT reaction channels, which is highly dependent on the energy of the reacting tritium ions. There are very few measurements on the TT spectrum and the study at JET would be interesting. The work is focused on the determination of the spectral characteristics in the TT plasma discharges, especially on the presence of the 8.8 MeV peak, a consequence of channel (2) of the TT reaction. The possibility to use an optimized set of activation materials in order to target the measurement of the 8.8 MeV peak is studied. The lower limit of detection for the channel (2) ratio within the TT reaction is estimated and the influence of DT source neutrons, which are a consequence of deuterium traces in the plasma, is investigated
    corecore