7 research outputs found

    Magneto-optic properties of ultrathin nanocrystalline ferrite garnet films in the 8K to 300K temperature interval

    Get PDF
    A study of the initial stages of crystallization in RF magnetron-sputtered ferrite garnet films is reported, in which a series of ultrathin Bi2Dy1Fe4Ga1O12 layers is fabricated and characterized. The spectral and temperature dependencies of magnetic circular dichroism (MCD) of these films are studied in the temperature range from 300 K down to 8 K. Measured magneto-optical properties are reported in the spectral range between 300 and 600 nm. In ultrathin garnets at temperatures below 160 K, we found that between 360 and 520 nm, the spectral MCD dependencies were typical of bismuth-substituted garnets with high levels of gallium dilution in the tetrahedral sublattice. The MCD signal strength measured at its 440 nm peak grows linearly with reducing temperature between 160 K and 8 K. This observed temperature dependency of MCD differed dramatically from these measured in thicker (3.7 nm) nanocrystalline garnet films. The peak MCD signal at 440 nm in these 3.7 nm-thick samples grows linearly from 215 K down to 100 K, resembling the same dependency seen in 1.7 nm films. In thinnest layers of thickness 0.6 nm, no MCD signals were observed at any temperature in the range between 8 and 300 K

    Immunohistochemical characteristics in diagnostics of prostate diseases

    No full text
    The comparative assessment of molecular markers expression during prostate gland diseases of dishormonal and tumorous nature was carried out and peculiarities of histochemical characteristics have been revealed on the basis of physical examination of 57 patients, which have been treated at the Research Institute of Fundamental and Clinical Uronephrology of Saratov State Medical University n.a. V.I. Rasumovsky

    Magnetic resonance diffusion-weighted whole-body imaging (DWIBS) in the urinary bladder cancer diagnostics

    No full text
    The purpose of the article is to identify the most characteristic and significant changes of magnetic resonance indicators in patients with the urinary bladder cancer during diffusion-weighed whole-body imaging (DWIBS). Materials: From September 2009 till April 2011 98 patients have been examined: 61 (62.2%) with morphologically verified bladder cancer and 37 (37.8%) with cystitis. Results: The study has revealed that the sensitivity of DWIBS investigation in detecting bladder cancer is 98.36%, specificity is 10.81, and the efficacy is 65.38%. Conclusions: DWIBS is an informative noninvasive method for screening diagnostics of bladder cancer, as well as for identificating suspicious areas of regional and distant metastases

    Synthesis and Structure of ZnO-Decorated Graphitic Carbon Nitride (g-C<sub>3</sub>N<sub>4</sub>) with Improved Photocatalytic Activity under Visible Light

    No full text
    The volume of dye production in the chemical industry is growing rapidly every year. Given the global importance of clean water resources, new wastewater treatment solutions are required. Utilizing photocatalysis by harvesting solar energy represents a facile and promising solution for removing dangerous pollutants. This study reports the possibility of increasing the photocatalytic activity of g-C3N4 by creating nanocomposites with ZnO. Exfoliated g-C3N4/ZnO nanocomposites were synthesized by heat treatment of urea and subsequent ultrasonic exfoliation of the colloidal solution by introducing zinc acetate. The uniformity of the distribution of ZnO nanoparticles is confirmed by the method of elemental mapping. The obtained X-ray diffractograms of the obtained nanocomposites show typical X-ray reflections for g-C3N4 and ZnO. It was found that the introduction of oxide into g-C3N4 leads to an increase in the specific surface area values due to the developed ZnO surface. The maximum value of the specific surface area was obtained for a sample containing 7.5% ZnO and was 75.2 m2/g. The g-C3N4/7.5% ZnO sample also demonstrated increased photocatalytic activity during the decomposition of methylene blue under the influence of visible light, which led to a twofold increase in the reaction rate compared to initial g-C3N4

    Mitochondria in the Nuclei of Rat Myocardial Cells

    No full text
    Electron microscopic study of cardiomyocytes taken from healthy Wistar and OXYS rats and naked mole rats (Heterocephalus glaber) revealed mitochondria in nuclei that lacked part of the nuclear envelope. The direct interaction of mitochondria with nucleoplasm is shown. The statistical analysis of the occurrence of mitochondria in cardiomyocyte nuclei showed that the percentage of nuclei with mitochondria was roughly around 1%, and did not show age and species dependency. Confocal microscopy of normal rat cardiac myocytes revealed a branched mitochondrial network in the vicinity of nuclei with an organization different than that of interfibrillar mitochondria. This mitochondrial network was energetically functional because it carried the membrane potential that responded by oscillatory mode after photodynamic challenge. We suggest that the presence of functional mitochondria in the nucleus is not only a consequence of certain pathologies but rather represents a normal biological phenomenon involved in mitochondrial/nuclear interactions
    corecore