30 research outputs found
Distribution of varicella-zoster virus (VZV) wild-type genotypes in northern and southern Europe: Evidence for high conservation of circulating genotypes
AbstractPhylogenetic analysis of 19 complete VZV genomic sequences resolves wild-type strains into 5 genotypes (E1, E2, J, M1, and M2). Complete sequences for M3 and M4 strains are unavailable, but targeted analyses of representative strains suggest they are stable, circulating VZV genotypes. Sequence analysis of VZV isolates identified both shared and specific markers for every genotype and validated a unified VZV genotyping strategy. Despite high genotype diversity no evidence for intra-genotypic recombination was observed. Five of seven VZV genotypes were reliably discriminated using only four single nucleotide polymorphisms (SNP) present in ORF22, and the E1 and E2 genotypes were resolved using SNP located in ORF21, ORF22 or ORF50. Sequence analysis of 342 clinical varicella and zoster specimens from 18 European countries identified the following distribution of VZV genotypes: E1, 221 (65%); E2, 87 (25%); M1, 20 (6%); M2, 3 (1%); M4, 11 (3%). No M3 or J strains were observed
Improved Identification and Differentiation of Varicella-Zoster Virus (VZV) Wild-Type Strains and an Attenuated Varicella Vaccine Strain Using a VZV Open Reading Frame 62-Based PCR
A new method was developed to identify and differentiate varicella-zoster virus (VZV) wild-type strains from the attenuated varicella Oka vaccine strain. The PCR technique was used to amplify a VZV open reading frame (ORF) 62 region. A single specific amplicon of 268 bp was obtained from 71 VZV clinical isolates and several laboratory strains. Subsequent digestion of the VZV ORF 62 amplicons with SmaI enabled accurate strain differentiation (three SmaI sites were present in amplicons of vaccine strain VZV, compared with two enzyme cleavage sites for all other VZV strains tested). This method accurately differentiated the Oka vaccine strain from wild-type VZV strains circulating in countries representing all six populated continents. Moreover, the assay more reliably distinguished wild-type Japanese strains from the vaccine strain than did previously described methods
Genotypic Analysis of Varicella-Zoster Virus and Its Seroprevalence in Finlandâ–¿
We evaluated the seroprevalence of varicella-zoster virus (VZV) in the Finnish population among various age groups and genetically characterized VZV strains from documented cases of varicella and zoster. VZV-specific immunoglobulin G was measured in 2,842 serum samples that had been submitted for virological studies to the Department of Virology, University of Helsinki, from 1995 to 1996. Specimens for VZV genotyping were obtained from vesicular lesions from two pediatric patients and 26 adult patients. Seroprevalence to VZV varied markedly by age: 45% in children aged ≤2 months, 12.5% in children aged 6 to 8 months, and >90% in children near 10 years of age, plateauing thereafter into advanced age. The seroprevalence rates indicate that in Finland, as in other countries with temperate climates, primary VZV infection usually occurs during the first decade of life. Twenty-eight VZV DNA-positive specimens were analyzed to identify VZV vaccine and wild-type genotypes. All analyzed specimens were wild type and the European (E) genotype
Complete-Genome Phylogenetic Approach to Varicella-Zoster Virus Evolution: Genetic Divergence and Evidence for Recombination
Recent studies of varicella-zoster virus (VZV) DNA sequence variation, involving large numbers of globally distributed clinical isolates, suggest that this virus has diverged into at least three distinct genotypes designated European (E), Japanese (J), and mosaic (M). In the present study, we determined and analyzed the complete genomic sequences of two M VZV strains and compared them to the sequences of three E strains and two J strains retrieved from GenBank (including the Oka vaccine preparation, V-Oka). Except for a few polymorphic tandem repeat regions, the whole genome, representing approximately 125,000 nucleotides, is highly conserved, presenting a genetic similarity between the E and J genotypes of approximately 99.85%. These analyses revealed that VZV strains distinctly segregate into at least four genotypes (E, J, M1, and M2) in phylogenetic trees supported by high bootstrap values. Separate analyses of informative sites revealed that the tree topology was dependent on the region of the VZV genome used to determine the phylogeny; collectively, these results indicate the observed strain variation is likely to have resulted, at least in part, from interstrain recombination. Recombination analyses suggest that strains belonging to the M1 and M2 genotypes are mosaic recombinant strains that originated from ancestral isolates belonging to the E and J genotypes through recombination on multiple occasions. Furthermore, evidence of more recent recombination events between M1 and M2 strains is present in six segments of the VZV genome. As such, interstrain recombination in dually infected cells seems to figure prominently in the evolutionary history of VZV, a feature it has in common with other herpesviruses. In addition, we report here six novel genomic targets located in open reading frames 51 to 58 suitable for genotyping of clinical VZV isolates
Global Identification of Three Major Genotypes of Varicella-Zoster Virus: Longitudinal Clustering and Strategies for Genotyping
By analysis of a single, variable, and short DNA sequence of 447 bp located within open reading frame 22 (ORF22), we discriminated three major varicella-zoster virus (VZV) genotypes. VZV isolates from all six inhabited continents that showed nearly complete homology to ORF22 of the European reference strain Dumas were assigned to the European (E) genotype. All Japanese isolates, defined as the Japanese (J) genotype, were identical in the respective genomic region and proved the most divergent from the E strains, carrying four distinct variations. The remaining isolates carried a combination of E- and J-specific variations in the target sequence and thus were collectively termed the mosaic (M) genotype. Three hundred twenty-six isolates collected in 27 countries were genotyped. A distinctive longitudinal distribution of VZV genotypes supports this approach. Among 111 isolates collected from European patients, 96.4% were genotype E. Consistent with this observation, approximately 80% of the VZV strains from the United States were also genotype E. Similarly, genotype E viruses were dominant in the Asian part of Russia and in eastern Australia. M genotype viruses were strongly dominant in tropical regions of Africa, Indochina, and Central America, and they were common in western Australia. However, genotype M viruses were also identified as a minority in several countries worldwide. Two major intertypic variations of genotype M strains were identified, suggesting that the M genotype can be further differentiated into subgenotypes. These data highlight the direction for future VZV genotyping efforts. This approach provides the first simple genotyping method for VZV strains in clinical samples
Identification of Five Major and Two Minor Genotypes of Varicella-Zoster Virus Strains: a Practical Two-Amplicon Approach Used To Genotype Clinical Isolates in Australia and New Zealandâ–¿
Whole genome phylogenetic analysis in this study resolved a total of five major genotypes among the 22 varicella-zoster virus (VZV) strains or isolates for which complete genomic sequences are available. Consistent with earlier publications we have designated these genotypes European 1 (E1), European 2 (E2), Japanese (J), mosaic 1 (M1), and mosaic 2 (M2). Single nucleotide polymorphism (SNP) analysis performed in a whole-genome alignment revealed that VZV isolates of all five genotypes can be accurately genotyped using SNPs from two amplicons: open reading frame 22 (ORF22) and either ORF21 or ORF50. This modified approach identifies all of the genotypes observed using any of the published genotyping protocols. Of 165 clinical varicella and zoster isolates from Australia and New Zealand typed using this approach, 67 of 127 eastern Australian isolates were E1, 30 were E2, 16 were J, 10 were M1, and 4 were M2; 25 of 38 New Zealand isolates were E1, 8 were E2, and 5 were M1. VZV strain diversity in eastern Australia is thus broader than has been described for any other region, including Europe, Africa, and North America. J strains were far more prevalent than previously observed in countries other than Japan. Two-amplicon typing was in complete accord with genotypes derived using SNP in multiple ORFs (ORFs 1, 21, 22, 38, 50, 54, and 62). Two additional minor genotypes, M3 and M4, could also be resolved using two-amplicon typing